Building on well-known system theoretical results, simple numerical tools are introduced for the evaluation of the worst-case voltage droops in Power Distribution Networks (PDN), in various Power Integrity verification scenarios. Given a PDN model and suitable bounds on load current values and slew rates, the proposed approach provides an explicit bound of the worst-case voltage droop, as well as the particular input current waveforms that produce it. Validations are provided based on two realistic PDN models.
Fast Prediction of Worst-Case Voltage Droops in Power Distribution Networks / Carlucci, Antonio; Bradde, Tommaso; Grivet-Talocia, Stefano. - ELETTRONICO. - (2024), pp. 1-4. (Intervento presentato al convegno 2024 IEEE 28th Workshop on Signal and Power Integrity (SPI) tenutosi a Lisbon (Portugal) nel 12-15 May 2024) [10.1109/spi60975.2024.10539221].
Fast Prediction of Worst-Case Voltage Droops in Power Distribution Networks
Carlucci, Antonio;Bradde, Tommaso;Grivet-Talocia, Stefano
2024
Abstract
Building on well-known system theoretical results, simple numerical tools are introduced for the evaluation of the worst-case voltage droops in Power Distribution Networks (PDN), in various Power Integrity verification scenarios. Given a PDN model and suitable bounds on load current values and slew rates, the proposed approach provides an explicit bound of the worst-case voltage droop, as well as the particular input current waveforms that produce it. Validations are provided based on two realistic PDN models.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2024-spi-droop-IEEE.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										677.45 kB
									 
										Formato
										Adobe PDF
									 | 677.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| cnf-2024-spi-droop.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										625.92 kB
									 
										Formato
										Adobe PDF
									 | 625.92 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2989144
			
		
	
	
	
			      	