We study structural properties of Wiener-Lebesgue spaces with respect to a slowly varying metrics and certain Lebesgue parameters. For $p\in (0,1]$, we deduce Schatten-$p$ properties for pseudo-differential operators whose symbols, together with their derivatives, obey suitable Wiener-Lebesgue-boundedness conditions. Especially, we perform such investigations for the Weyl-H\"ormander calculus. Finally, we apply our results to global-type SG and Shubin pseudo-differential operators.
Quasi-Banach Schatten-von Neumann properties in Weyl-Hörmander calculus / Bonino, Matteo; Coriasco, Sandro; Petersson, Albin; Toft, Joachim. - (2024).
Quasi-Banach Schatten-von Neumann properties in Weyl-Hörmander calculus
Matteo Bonino;
2024
Abstract
We study structural properties of Wiener-Lebesgue spaces with respect to a slowly varying metrics and certain Lebesgue parameters. For $p\in (0,1]$, we deduce Schatten-$p$ properties for pseudo-differential operators whose symbols, together with their derivatives, obey suitable Wiener-Lebesgue-boundedness conditions. Especially, we perform such investigations for the Weyl-H\"ormander calculus. Finally, we apply our results to global-type SG and Shubin pseudo-differential operators.File | Dimensione | Formato | |
---|---|---|---|
2405.05065.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
270.98 kB
Formato
Adobe PDF
|
270.98 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2989016