We study structural properties of Wiener-Lebesgue spaces with respect to a slowly varying metrics and certain Lebesgue parameters. For $p\in (0,1]$, we deduce Schatten-$p$ properties for pseudo-differential operators whose symbols, together with their derivatives, obey suitable Wiener-Lebesgue-boundedness conditions. Especially, we perform such investigations for the Weyl-H\"ormander calculus. Finally, we apply our results to global-type SG and Shubin pseudo-differential operators.

Quasi-Banach Schatten-von Neumann properties in Weyl-Hörmander calculus / Bonino, Matteo; Coriasco, Sandro; Petersson, Albin; Toft, Joachim. - (2024).

Quasi-Banach Schatten-von Neumann properties in Weyl-Hörmander calculus

Matteo Bonino;
2024

Abstract

We study structural properties of Wiener-Lebesgue spaces with respect to a slowly varying metrics and certain Lebesgue parameters. For $p\in (0,1]$, we deduce Schatten-$p$ properties for pseudo-differential operators whose symbols, together with their derivatives, obey suitable Wiener-Lebesgue-boundedness conditions. Especially, we perform such investigations for the Weyl-H\"ormander calculus. Finally, we apply our results to global-type SG and Shubin pseudo-differential operators.
2024
File in questo prodotto:
File Dimensione Formato  
2405.05065.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 270.98 kB
Formato Adobe PDF
270.98 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989016