This article presents an approach to drag-free and attitude control for the laser interferometer space antenna (LISA) space mission, based on a constrained decoupling H-infinity approach. LISA will be a space-based gravitational wave observatory, which is expected to be launched by the European Space Agency (ESA) in 2034. The LISA concept consists of a constellation of three satellites that exchange a bidirectional laser link to perform interferometry. The gravitational waves can be detected by measuring the relative distance variations, by means of laser interferometers, between two free-falling bodies located at a far distance, called the test masses (TMs). In this framework, the spacecraft (SC) drag-free attitude control plays a key role since it allows the TMs to move in free-fall conditions, rejecting external disturbances and noises, at the nanoscopic level, that can compromise the quality of scientific measurements. To this end, we propose an H-infinity drag-free attitude controller, based on a constrained decoupling of the SC linearized dynamics, where the pseudoinverse of the control matrix is obtained by minimizing the inversion error. Moreover, we provide sufficient conditions for stability of the closed-loop, in order to ensure that the decoupling inversion error does not affect the closed-loop stability. The effectiveness of the proposed approach is confirmed by means of an extensive Monte Carlo campaign, carried out employing a high-fidelity simulator.
Drag-free and attitude control system for the LISA space mission: an H-infinity constrained decoupling approach / Vidano, Simone; Pagone, Michele; Grzymisch, Jonathan; Preda, Valentin; Novara, Carlo. - In: IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. - ISSN 1063-6536. - STAMPA. - (2024). [10.1109/TCST.2024.3400176]
Drag-free and attitude control system for the LISA space mission: an H-infinity constrained decoupling approach
Michele Pagone;Carlo Novara
2024
Abstract
This article presents an approach to drag-free and attitude control for the laser interferometer space antenna (LISA) space mission, based on a constrained decoupling H-infinity approach. LISA will be a space-based gravitational wave observatory, which is expected to be launched by the European Space Agency (ESA) in 2034. The LISA concept consists of a constellation of three satellites that exchange a bidirectional laser link to perform interferometry. The gravitational waves can be detected by measuring the relative distance variations, by means of laser interferometers, between two free-falling bodies located at a far distance, called the test masses (TMs). In this framework, the spacecraft (SC) drag-free attitude control plays a key role since it allows the TMs to move in free-fall conditions, rejecting external disturbances and noises, at the nanoscopic level, that can compromise the quality of scientific measurements. To this end, we propose an H-infinity drag-free attitude controller, based on a constrained decoupling of the SC linearized dynamics, where the pseudoinverse of the control matrix is obtained by minimizing the inversion error. Moreover, we provide sufficient conditions for stability of the closed-loop, in order to ensure that the decoupling inversion error does not affect the closed-loop stability. The effectiveness of the proposed approach is confirmed by means of an extensive Monte Carlo campaign, carried out employing a high-fidelity simulator.File | Dimensione | Formato | |
---|---|---|---|
LISA_final_submission.pdf
non disponibili
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2988903