In this paper, the design of an isolated Memristor Cellular Nonlinear Network (CNN) cell with discrete electronic elements is presented. The proposed versatile circuit allows for adjustable cell dynamical characteristics, controlled by design parameters, while the discrete element approach enables simple on-board implementation without the need for large-scale integration, which is necessary for testing hardware with individual fabricated memristors. A voltage-mode approach, that makes use of the diversity of operational amplifiers, is preferred here over a current-mode one that necessitates a large number of individual transistors. The dynamical properties of the system are initially investigated through the calculation of equilibrium points and further illustrated applying the concept of State Dynamic Routes (SDRs) for the cell assuming that the memristor dynamics are much slower than the capacitor voltage dynamics. Moreover, the effect of design parameters on the cell dynamics is being investigated, showing how the scaling of the operating voltage, as well as a plethora of CNN variants - i.e., the Chua- Yang and Full Range models -, can be implemented within the same design. Finally, the nonlinear conductance properties of real memristor devices are incorporated into the study, demonstrating interesting bifurcation phenomena between the cell monostability and bistability for specific parameter values.

Design and Analysis of Isolated Voltage-Mode Memristor Cellular Nonlinear Network Cells / Ntinas, V; Wang, Y; Demirkol, As; Messaris, I; Rana, V; Menzel, S; Ascoli, A; Tetzlaff, R. - ELETTRONICO. - (2023). (Intervento presentato al convegno IEEE International Symposium on Circuits and Systems (ISCAS), 2023 tenutosi a Monterey, California (USA) nel 21-25 May 2023) [10.1109/ISCAS46773.2023.10181832].

Design and Analysis of Isolated Voltage-Mode Memristor Cellular Nonlinear Network Cells

Ascoli A;
2023

Abstract

In this paper, the design of an isolated Memristor Cellular Nonlinear Network (CNN) cell with discrete electronic elements is presented. The proposed versatile circuit allows for adjustable cell dynamical characteristics, controlled by design parameters, while the discrete element approach enables simple on-board implementation without the need for large-scale integration, which is necessary for testing hardware with individual fabricated memristors. A voltage-mode approach, that makes use of the diversity of operational amplifiers, is preferred here over a current-mode one that necessitates a large number of individual transistors. The dynamical properties of the system are initially investigated through the calculation of equilibrium points and further illustrated applying the concept of State Dynamic Routes (SDRs) for the cell assuming that the memristor dynamics are much slower than the capacitor voltage dynamics. Moreover, the effect of design parameters on the cell dynamics is being investigated, showing how the scaling of the operating voltage, as well as a plethora of CNN variants - i.e., the Chua- Yang and Full Range models -, can be implemented within the same design. Finally, the nonlinear conductance properties of real memristor devices are incorporated into the study, demonstrating interesting bifurcation phenomena between the cell monostability and bistability for specific parameter values.
2023
978-1-6654-5109-3
File in questo prodotto:
File Dimensione Formato  
Design and Analysis of Isolated Voltage-Mode Memristor Cellular Nonlinear Network Cells.pdf

non disponibili

Descrizione: Contributo in Atti di convegno
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.23 MB
Formato Adobe PDF
7.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2988465