The introduction of memcomputing memristors into the design of Cellular Nonlinear Networks (CNNs) allows to reduce the integrated circuit area typically allocated to each processing element in hardware realizations. Furthermore, the highly nonlinear dynamics of memristors enriches the multivariate signal processing capabilities of these cellular memprocessing structures. This is demonstrated in this paper, where the standard and generalized Dynamic Route Map analysis tools are employed to elucidate the mechanisms by which a Memristor CNN with bistable-like and analog dynamic nonvolatile memristors executes fundamental image processing operations, respectively.

Image Processing by Cellular Memcomputing Structures / Ascoli, A; Tetzlaff, R; Messaris, I; Kang, Sm; Chua, Lo. - STAMPA. - (2020). (Intervento presentato al convegno 2020 IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a Sevilla (Spain) nel 12-14 October 2020) [10.1109/ISCAS45731.2020.9181107].

Image Processing by Cellular Memcomputing Structures

Ascoli A;
2020

Abstract

The introduction of memcomputing memristors into the design of Cellular Nonlinear Networks (CNNs) allows to reduce the integrated circuit area typically allocated to each processing element in hardware realizations. Furthermore, the highly nonlinear dynamics of memristors enriches the multivariate signal processing capabilities of these cellular memprocessing structures. This is demonstrated in this paper, where the standard and generalized Dynamic Route Map analysis tools are employed to elucidate the mechanisms by which a Memristor CNN with bistable-like and analog dynamic nonvolatile memristors executes fundamental image processing operations, respectively.
2020
978-1-7281-3320-1
File in questo prodotto:
File Dimensione Formato  
Image Processing by Cellular Memcomputing Structures.pdf

non disponibili

Descrizione: Contributo in Atti di convegno
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2988431