Environmental variables such as temperature, matric suction and pore fluid composition are well known to influence the hydro-mechanical behavior of clays and shales. The type and the relevance of this influence depends on the mineralogical composition and on the fabric of the material. Soil activity is an engineering proxy for mineralogical composition which can be used for a preliminary characterization of the expected type of behaviour under chemical actions, if those do not imply very significant cation exchange or pH variations. Very large chemo-mechanical effects occur in highly active soils used in engineering works such as barriers for nuclear waste or landfills, however concentration changes also impact on the mechanical behavior of non - active soils and rocks, such as illitic or natural blends of clays. Such materials are widely distributed in nature and their mechanical response upon chemical changes can be problematic in many cases. Examples of engineering relevance include vast slope instabilities promoted by fabric changes due to desalinization in Scandinavian quick clays, and instability or convergence issues for boreholes drilled in shales exposed to muds with a different chemical composition from the one of the pore fluid. An elastoplastic model is formulated to simulate the volumetric behaviour of such materials along chemical and mechanical loads. In addition to the parameters of the Modified Cam Clay, it requires defining the dependency of the elasto-plastic compliance and reference void ratio on pore fluid salinity. The model performs well against experiments from literature where complex chemo-mechanical histories were imposed.

Elasto - Plastic modelling of the behaviour of non - Active clays under chemo - Mechanical actions / Musso, G.; Scelsi, G.; Della Vecchia, G.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 205:(2020), pp. 1-6. (Intervento presentato al convegno 2nd International Conference on Energy Geotechnics, ICEGT 2020 tenutosi a La Jolla (USA) nel 20 September 2020 through 23 September 2020) [10.1051/e3sconf/202020504011].

Elasto - Plastic modelling of the behaviour of non - Active clays under chemo - Mechanical actions

Musso G.;Scelsi G.;Della Vecchia G.
2020

Abstract

Environmental variables such as temperature, matric suction and pore fluid composition are well known to influence the hydro-mechanical behavior of clays and shales. The type and the relevance of this influence depends on the mineralogical composition and on the fabric of the material. Soil activity is an engineering proxy for mineralogical composition which can be used for a preliminary characterization of the expected type of behaviour under chemical actions, if those do not imply very significant cation exchange or pH variations. Very large chemo-mechanical effects occur in highly active soils used in engineering works such as barriers for nuclear waste or landfills, however concentration changes also impact on the mechanical behavior of non - active soils and rocks, such as illitic or natural blends of clays. Such materials are widely distributed in nature and their mechanical response upon chemical changes can be problematic in many cases. Examples of engineering relevance include vast slope instabilities promoted by fabric changes due to desalinization in Scandinavian quick clays, and instability or convergence issues for boreholes drilled in shales exposed to muds with a different chemical composition from the one of the pore fluid. An elastoplastic model is formulated to simulate the volumetric behaviour of such materials along chemical and mechanical loads. In addition to the parameters of the Modified Cam Clay, it requires defining the dependency of the elasto-plastic compliance and reference void ratio on pore fluid salinity. The model performs well against experiments from literature where complex chemo-mechanical histories were imposed.
2020
File in questo prodotto:
File Dimensione Formato  
e3sconf_icegt2020_04011.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2988368