The eco-morphodynamic activity of large tropical rivers interacts with riparian vegetation causing implications for the carbon cycle within inland waters. Through a multi-temporal analysis of satellite data spanning the years 2000-2019, we analyzed rivers exceeding 200 m in width across the tropical regions, revealing a Carbon Pump mechanism driving an annual mobilization of 12.45 million tons of organic carbon. The study identifies fluvial eco-morphological signatures as proxies for carbon mobilization, emphasizing the link between river migration and carbon dynamics. To enhance accessibility, our results are encapsulated in a visually compelling WebGIS application, offering a comprehensive understanding of the eco-geomorphological influences on the global carbon cycle within large tropical rivers. Our findings are instrumental in determining the carbon intensity of future hydropower dams, thereby contributing to informed decision-making in the realm of sustainable energy infrastructure. This study elucidates the intricate relationships that govern the nexus of tropical river dynamics, riparian ecosystems, and the global carbon cycle.
A global dataset of carbon pumping by the world’s largest tropical rivers / Salerno, L.; Giulio Tonolo, F.; Camporeale, C.. - In: SCIENTIFIC DATA. - ISSN 2052-4463. - 11:1(2024). [10.1038/s41597-024-03201-7]
A global dataset of carbon pumping by the world’s largest tropical rivers
Salerno L.;Giulio Tonolo F.;Camporeale C.
2024
Abstract
The eco-morphodynamic activity of large tropical rivers interacts with riparian vegetation causing implications for the carbon cycle within inland waters. Through a multi-temporal analysis of satellite data spanning the years 2000-2019, we analyzed rivers exceeding 200 m in width across the tropical regions, revealing a Carbon Pump mechanism driving an annual mobilization of 12.45 million tons of organic carbon. The study identifies fluvial eco-morphological signatures as proxies for carbon mobilization, emphasizing the link between river migration and carbon dynamics. To enhance accessibility, our results are encapsulated in a visually compelling WebGIS application, offering a comprehensive understanding of the eco-geomorphological influences on the global carbon cycle within large tropical rivers. Our findings are instrumental in determining the carbon intensity of future hydropower dams, thereby contributing to informed decision-making in the realm of sustainable energy infrastructure. This study elucidates the intricate relationships that govern the nexus of tropical river dynamics, riparian ecosystems, and the global carbon cycle.File | Dimensione | Formato | |
---|---|---|---|
s41597-024-03201-7.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.71 MB
Formato
Adobe PDF
|
3.71 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987940