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a global dataset of carbon pumping 
by the world’s largest tropical rivers
Luca Salerno  1 ✉, Fabio Giulio tonolo  2 & Carlo Camporeale1

the eco-morphodynamic activity of large tropical rivers interacts with riparian vegetation causing 
implications for the carbon cycle within inland waters. through a multi-temporal analysis of satellite 
data spanning the years 2000–2019, we analyzed rivers exceeding 200 m in width across the tropical 
regions, revealing a Carbon Pump mechanism driving an annual mobilization of 12.45 million tons 
of organic carbon. The study identifies fluvial eco-morphological signatures as proxies for carbon 
mobilization, emphasizing the link between river migration and carbon dynamics. To enhance 
accessibility, our results are encapsulated in a visually compelling WebGIS application, offering a 
comprehensive understanding of the eco-geomorphological influences on the global carbon cycle 
within large tropical rivers. Our findings are instrumental in determining the carbon intensity of future 
hydropower dams, thereby contributing to informed decision-making in the realm of sustainable 
energy infrastructure. This study elucidates the intricate relationships that govern the nexus of tropical 
river dynamics, riparian ecosystems, and the global carbon cycle.

Background & Summary
The traditional perception of river networks as passive and unchanging conduits for water and sediments, solely 
transporting them from their source to the oceans, has undergone substantial reevaluation in recent decades1,2. 
Rivers represent intricate and dynamic systems in which carbon is actively generated, transported, transformed, and 
stored in diverse forms, profoundly impacting the global carbon cycle across varying spatial and temporal scales3–5.

The assessment of carbon fluxes within the inland water carbon cycle has seen progressive refinement, eluci-
dating our current comprehension of carbon exchange with the soil, atmosphere, and oceans. Specifically, esti-
mates of terrestrial carbon input from wetland and riparian ecosystems remain subject to uncertainty and likely 
underestimation due to recognized and unidentified gaps6. Although the carbon flux from terrestrial ecosystems 
to the oceans is acknowledged as a pivotal pathway of the carbon cycle, the role of river dynamics in mobilizing 
carbon stored in extensive woodlands has largely been disregarded7.

During extreme events or river migration, water streams recruit a substantial amount of wood from the 
riparian zone. However, the destiny of this material remains inadequately understood. The classical perspective 
of the River Continuum Concept8 posits that Large Woods (LW) originating from floodplains undergo frag-
mentation, decomposition, and re-emission through outgassing. Nevertheless, multiple studies have provided 
evidence suggesting that once the river channel recruits LW, they can persist and remain buried within the allu-
vium for exceptionally long periods9,10. The storage of riverine sediment plays a crucial role in biogeochemical 
cycling5, as a significant portion of organic carbon from the biosphere is retained in terrestrial reservoirs for 
thousands of years prior to its eventual ultimate deposition in marine basins11.

The conventional approach used to determine global carbon export estimates as particulate organic carbon 
(POC) overlooked the inclusion of this coarse material5. While various techniques are currently under develop-
ment to track and quantify the transportation of woody material by rivers12–14, these methods are predominantly 
constrained to local scales, and a comprehensive evaluation of global wood export remains absent.

As emphasized by ref. 7, the mobilization of carbon is initiated through a two-step carbon pumping mecha-
nism (Fig. 1) that comprises Eco-Morphodynamic Carbon Export (eCE) and Enhanced Net Primary Production 
(ENPP). eCE refers to the carbon export from floodplains, whereas ENPP consists of enhanced C-fixation 
promoted by vegetation encroachment on bare riparian areas generated by the morphodynamic activity. We, 
therefore, define the eCP as the combination of these two processes, that work in cascade, and that are mainly 
energized by channel migration in meandering rivers and by overflow and flooding in multi-thread rivers (Fig. 1).
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Rivers periodically rework the floodplains, removing vegetation through uprooting or bank erosion. This 
vegetation recruitment by fluvial dynamics represents a pathway through which organic carbon stored in the 
terrestrial ecosystem enters the inland waters. The flow of organic carbon that reaches rivers and travels through 
the fluvial network, can result from soil leaching (DOC or POC), or from this morphodynamic-driver recruit-
ment. While the role in the carbon cycle of the first component is well recognized (although not constrainedly 
assessed), the second component is often implicitly assumed to be rapidly degraded and mineralized. We argue 
that it is a misconception to assume that all woody input is decomposed and reduced to micrometric size during 
the transit time in the fluvial system, and hence solely contributes to the fine component. The degradation time 
of the wood material15–18 is very often greater than the time it takes to reach the oceans. This is true both if the 
wood material leaves rivers and floodplains in a few months and when it is buried (and kept in anoxic conditions 
that protect it from degradation) and re-mobilized many times before reaching the ocean. Unlike the fine or dis-
solved fraction, the carbon contained in this coarse material can reside for a long time in floodplains or oceanic 
sediments before being mineralized and returning to the atmosphere.

Moreover, river dynamics are fundamental in the growth and development of floodplain forests. The 
morphodynamic-driven vegetation recruiting generates bare fertile riparian areas wherein new vegetation can 
rapidly grow. This continuous vegetation rejuvenation process influences the net primary production of the 
floodplain forests maintaining the system at an intermediate highly productive stage. Like the biological carbon 
pump19, whereby phytoplankton net production and its ultimate marine fall drive carbon from the atmosphere 
to ocean interior and seafloor sediments, we conjecture that photosynthetic fixation by riparian vegetation, the 
recruitment of LW, its transport, and burial, fit together in an integrated nexus in which rivers drive a carbon 
pump7 from the atmosphere to long-term stocks (i.e. floodplains and ocean).

Fig. 1 The functioning of the ecomorphodynamic Carbon Pumping (eCP) mechanism. (a) In meandering 
rivers, channel-migration-driven capture of woody biomass is exported from the outer bank into the stream 
(eCE). Young biomass then colonizes the inner newly deposited point bar, so driving further CO2-fixation 
from the atmosphere (ENPP) and promoting further river migration (feedback effect). Hydraulic energy 
(dashed blue arrows) drives morphodynamics and channel migration, while solar energy (dashed yellow 
arrows) drives the consequent CO2 fixation from the atmosphere. (b) In multi-thread rivers, extreme 
hydrologic events cause a reorganization of the floodplain, exporting biomass from bars, banks, and islands 
into the stream (eCE). Young vegetation colonizes the newly available spots driving further CO2 fixation from 
the atmosphere (ENPP). Hydraulic energy (dashed blue arrows) drives the overflow events, while solar energy 
(dashed yellow arrows) drives the consequent CO2 fixation from the atmosphere. In both cases, the output  
of the pump is the mobilization of LW and POM, which is eventually stored in river channel sediments  
or in oceans.
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Our study underscores the significant influence of river morphology on carbon fluxes within terrestrial 
systems, river corridors, and the atmosphere. Our geodatabase20 focused on tropical regions for two primary 
reasons. First, the processes under investigation are driven by the interactions between river morphological 
activities and riparian vegetation. Such interactions manifest in rivers where fluvial connectivity facilitates the 
exchange of water, sediment, and nutrients between floodplains and the river itself. Conversely, regulation and 
fragmentation constrain rivers’ capacity to flow freely, impacting interactions between rivers and terrestrial eco-
systems and altering or inhibiting eco-morphodynamic Carbon Export (eCE). Moreover, due to the limited tem-
poral availability of multispectral satellite data (spanning less than half a century), it was imperative to examine 
areas where processes evolve rapidly–specifically, where vegetation response to river disturbance is exception-
ally swift and detectable within the available data timeframe. The tropics emerged as an ideal study region for 
these considerations. In tropical regions, large rivers persist in their pristine state, unaltered by human activity, 
and feature dense, highly productive vegetation covering the floodplains. Secondly, the tropics warrant special 
attention due to the threat posed to river connectivity by the construction of a substantial number of new dams 
(351 large new dams are planned in the Amazon, La Plata, and Andean foreland basins alone). As elucidated in 
the study by ref. 7, tropical countries urgently require comprehensive watershed management interventions to 
mitigate the impact of freshwater exploitation on the global carbon cycle.

In the present geodatabase20, we provide a comprehensive global-scale assessment, expanding upon the find-
ings of a recent Neotropics-focused investigation7, to include regions in Africa and Asia/Oceania. The objective 
was to evaluate the annual recruitment of carbon in the form of Large Woods (LW) during the period 2000–2019 
across 162 major tropical rivers within 402 specified regions of interest (ROIs). Collectively, these rivers annually 
exported an estimated amount of 12.38 ± 0.96 million tons of carbon in the form of recruited riparian biomass. 
This recruitment contributes to the formation of a carbon sink, primarily through the deposition and burial of 
LW in the floodplain sedimentary compartment but with potential extension to the ocean.

Through the analysis of the present geodatabase20, we have identified four discernible signatures of fluvial 
eco-morphological activity that serve as proxies for assessing the carbon mobilization potential associated with 
river dynamics. These signatures provide valuable insights into the relationship between river processes and the 
efficient mobilization of carbon within fluvial systems. A visualization of the main results of this study is encap-
sulated in a WebGIS application.

In conclusion, this work analyses the effect that a set of specific geomorphic disturbances (the ones induced 
by river dynamics) has on the carbon cycle. This opens the way to extend this concept to other natural pro-
cesses that cause the removal of mature vegetation, preserve the carbon contained in that vegetation from rapid 
re-emission in the atmosphere and force the ecosystem to a juvenile high productive stage. As argued by ref. 21, 
areas where vegetation communities are disturbed frequently by high geomorphic activities, can experience an 
enhancement of NPP. That is due to the development of early-successional forest ecosystems that populate the 
area after disturbance and can sequestrate carbon rapidly. In part, this enhancement on NPP can be also due 
to the time gap between vegetation succession and full recovery of soil microbiological communities, which 
limits the decomposition of organic matter in the early phase of recovery5. Those phenomena are still poorly 
understood and further investigations need. We further remark that a comprehensive assessment of the role of 
river dynamics on the carbon cycle should be integrated with the analysis of the autotrophic biomass, and thus 
ecosystem metabolism, and metabolic regimes as suggested by ref. 22.

Since eCP (eCE and ENPP) is strictly correlated with sediment supply and river migration, alterations in lat-
eral erosion, uprooting, and overflow in natural rivers negatively influence this process. Furthermore, increasing 
development and changes in climate and land use are bringing severe impacts on streams, which are increasingly 
being regulated thereby altering the natural migration of the river, the flow pattern, and the intermittency of dry 
and wet periods in floodplains.

These data present a valuable resource for delving deeper into the influence of eco-geomorphology in large 
tropical rivers on the global carbon cycle. Moreover, the insights derived from this analysis hold significance for 
shaping future water management policies, specifically concerning carbon, in these river systems. As highlighted 
by ref. 7, accurately quantifying carbon mobilization driven by river migration is a critical determinant in estab-
lishing the carbon intensity of forthcoming hydropower dams.

Methods
We conducted the analysis on tropical rivers wider than 200 m, covering the period from 2000 to 2019, previ-
ously classified as “free-flowing” with minimal human disturbance according to ref. 23. This investigation yielded 
a geodatabase consisting of 162 large rivers encompassing 402 regions of interest (ROI). The total length of these 
rivers reached 108,000 km, covering an overall analyzed area of 403,000 km2, of which approximately 62,000 km2 
represents active wet surfaces (see River filtering and ROI definition).

To examine the impact of river dynamics on vegetation, we employed satellite remote sensing analysis using 
the freely accessible Google Earth Engine platform24. Specifically, our focus was on the vegetation loss within 
the river corridors. By employing a probabilistic classification mapping technique (described in Probabilistic 
classification model), we estimated that the affected area during the period from 2000 to 2019 was approximately 
17,693 km2, equivalent to a mean annual forest loss of 931 km2/year.

Definition of procedure for eCE assessment. In this section, we present a schematic representation of 
the framework used in this study to quantify the recruitment of carbon stored in standing riparian vegetation 
induced by large tropical rivers. Further details of the procedure are described in the next sections. The eCE 
assessment procedure is based on the analysis of satellite products in order to identify the portions of floodplain 
forest recruited by river morphodynamic activities, and thus estimate the organic carbon contained in the bio-
mass exported from terrestrial ecosystems to inland waters.

https://doi.org/10.1038/s41597-024-03201-7
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The identification of suitable rivers for analysis entails a rigorous selection process, guided by specific criteria:

•	 Visual Inspection of Landsat Imagery and CSI Index Analysis: Landsat imagery is subjected to meticulous 
visual examination, coupled with an in-depth analysis utilizing the Channel Stability Index (CSI) developed 
by ref. 23. This process aids in the identification and exclusion of rivers impacted by anthropogenic influences.

•	 Assessment of Main Channel Width Relative to Mean Annual Discharge: To ensure compatibility with the 
spatial resolution of the datasets utilized, an evaluation of the main channel width in relation to mean annual 
discharge is carried out, as outlined by ref. 25.

Through this rigorous selection process, we successfully identified a substantial network of rivers spanning 
approximately 108,000 kilometers across tropical regions, with a minimum width threshold of 200 meters, char-
acterized by preserved connectivity and consequential hydrodynamic behavior.

Each selected river was divided into regions of interest (ROIs). The ROIs, which represent the elementary 
units for the analysis, were defined through longitudinal and lateral boundaries in order to identify floodplain 
areas characterized by homogeneous morphological behaviour and affected by river dynamics in the last three 
decades (see section ROIs definition).

While the river selection procedure facilitated the identification of river segments with minimal anthropo-
genic influence on the interaction between rivers and terrestrial regions, it does not preclude the possibility that 
human-induced or non-river-related events may still contribute to forest loss. To ensure accurate quantification 
of carbon export attributable solely to River-Driven Forest Loss (RDFL), a probabilistic classification model was 
used to identify forest loss in the selected floodplain regions. This model – described in the Probabilistic 
Classification Model section – determines the probability Pj, k of RDFL occurrence in each pixel of the ROI by 
integrating the Global Forest Change dataset26 with three potential drivers of forest loss unrelated to rivers: (1) 
population density, (2) wildfires, and (3) land cover changes. For each pixel k of ROI j in which forest loss 
occurred, the model assessed the likelihood that the forest cover change was not due to urbanization (P jk

u( )), 
wildfire (P jk

wf( )), or anthropogenic land-cover changes (P jk
lc( )), resulting in three different likelihood maps (see 

Probabilistic classification model for forest change). The overall likelihood map was obtained by multiplying the 
three probability maps, since they refer to independent events, namely P P P Pjk jk

u
jk
wf

jk
lc( ) ( ) ( )= ⋅ ⋅ . While there may 

exist a potential correlation between urbanization and alterations in land-cover changes, we have chosen not to 
incorporate these factors into our analysis due to their inherent challenges in large-scale quantification. 
Consequently, our assessment of forest loss driven by river dynamics tends to be more conservative. Extreme 
likelihood values are Pj, k = 0 (no forest loss or forest loss undoubtedly due to causes other than river dynamics), 
and P = 1 (forest loss undoubtedly due to river geomorphic activity). The eCE of the j-th ROI, expressed as TgC 
exported per year (in the form of woody biomass), was calculated as

∑ ∑ ρ= = ⋅eCE eCE L
(1)

j
k

j k
k

j k j k, , ,

where ρj, k is the biomass density [TgC/km2] and Lj, k is the annual mean RDFL [km2 /year] for the period 2000–
2019 and for pixel k of ROIj. To statistically exclude non-riverine causes, Lj, k was calculated as the product of 
the cell area Aj, k and the probability Pj, k that the loss is RDFL (see section “Probabilistic Classification Model”). 
We used four different methods to assess biomass density (M1-M4, see section Biomass Density Assessment). A 
graphical summary of the whole methodology is reported in Fig. 2.

Global datasets used in the study as input. In the present work, several global databases were ana-
lyzed, as listed in Table 1, to investigate different aspects related to carbon dynamics and river activity. (1) The 
first dataset, WHRC Carbon Stock, provides a national-level map of aboveground live woody biomass density 
for tropical countries at a resolution of 500 m. It incorporates field measurements, LiDAR observations, and 
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery27. This dataset was used to estimate carbon 
density within regions of interest, calibrate plant growth models (see Biomass Density Assessment), and clas-
sify the distribution signature of biomass (see Definition of Carbon Signature). (2) The WHRC Aboveground 
Live Woody Biomass Density dataset extends the methodology presented in ref. 27 and provides a global map 
of aboveground biomass at approximately 30 meter resolution28. It was used in this study to estimate carbon 
density within regions of interest and to calibrate plant growth models (see Biomass Density Assessment). (3) 
The Global Forest Change dataset provides information on global forest extent and change through time series 
analysis of Landsat imagery26. This dataset, specifically version 1.7 covering the period 2000–2019, was used to 
assess river-driven forest loss in the study (see assessment of river-driven forest loss). (4) The Global Surface Water 
dataset provides maps and statistics on the location, temporal distribution, extent, and changes of surface water 
from 1984 to 201929. The dataset, specifically version 1.2 covering the period 2000–2019, has been used to assess 
wetlands within regions of interest (see ROI definition). (5) The MODIS Burned Area Monthly Global 500 m 
dataset provides per-pixel burned area and quality information at a monthly global gridded resolution of 500 m30. 
It was used to define the probability map of riverine forest loss (see Riverine Forest Loss Assessment). (6) The 
WorldPop Global Project Population Data provides high-resolution data on the distribution of human popula-
tions worldwide31–33. This dataset was used to define the probability map of riverine forest loss (see Riverine Forest 
Loss Assessment). (7) The MODIS Land Cover Type Yearly Global 500 m dataset provides global land cover types 
at yearly intervals from 2001 to 2019, derived from six different classification schemes34. It was used to define the 
probability map of river-driven forest loss (see River-driven forest loss assessment). (8) The Free Flowing Rivers 
dataset maps the world’s free-flowing rivers, identifying natural river reaches unaffected by human activities23. It 
was used to perform the identification of unimpacted river reaches (see River selection). (9) The HydroATLAS and 

https://doi.org/10.1038/s41597-024-03201-7
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RiverATLAS database35 provides a wide range of hydro-environmental attributes from existing global datasets in 
a consistent and organized manner. It was used for river selection and data filtering.

river selection. In order to ensure the strict adherence of eco-morphodynamic Carbon Export (eCE) quan-
tification to the RDFL concept, a comprehensive two-step selection procedure was employed to identify and 
exclude cases that did not meet the RDFL criteria, particularly floodplain areas impacted by anthropic activities.

Step 1: Identification of anthropogenic alterations through visual inspection of Landsat Imagery and 
analysis of Connectivity Status Index (CSI)23

The first step involved a meticulous visual inspection of Landsat imagery to identify evident sources of 
anthropic alteration. Various physical infrastructures within the river channel and along the surrounding flood-
plain were scrutinized, including river channelization, check dams, weirs, fords, embankments, bank protection 
measures, revetments, and mining activities. Due to the presence of these alterations, all large Indian rivers 
were excluded from the analysis. This exclusion was necessary to ensure that the quantification of eCE focused 
exclusively on rivers that were minimally affected by significant human-induced modifications. Rivers were 
further classified based on the Connectivity Status Index (CSI) introduced by ref. 23. The CSI index serves as an 
indicator of fluvial connectivity and takes into account factors such as fragmentation, regulation, and alterations 
in water quality and temperature. Rivers classified as “not free-flowing” according to the CSI index (CSI index 
<95%) were excluded from the study. This criterion was applied to exclude rivers where fluvial connectivity was 
compromised due to anthropogenic factors.

Step 2: Assessment of the main channel width
The second step is to select only those rivers with a channel width exceeding 200 m when considering the 

mean annual discharge. River width is assessed according to ref. 25. This selection essentially depends on the spa-
tial resolution of the available data sets. The satellite products26 currently available to study forest change during 
the last two decades at the global scale are based on the detection of stand disturbance or complete removal of 
tree canopy at the Landsat pixel scale (30 m). Similarly, the water surface detection datasets are based on Landsat 
imagery and can detect rivers greater than 30 m. However, the data are most accurate and complete at widths 
greater than 90 m25 (approximately three Landsat pixels). Assuming that also sinuous/meandering rivers can be 

162 tropical rivers larger than 200 m 
width embedded in 402 ROIs
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https://doi.org/10.1038/s41597-024-03201-7


6Scientific Data |          (2024) 11:382  | https://doi.org/10.1038/s41597-024-03201-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

locally characterized by at least a two-channel pattern, it was considered in this analysis only rivers with a main 
channel width greater than 6.5 Landsat pixels (i.e., 200 m).

The implementation of the first two steps resulted in the exclusion of a substantial portion (91%) of the total 
length of all tropical reaches with a Horton-Strahler index greater than or equal to 4, amounting to 1,297,000 km. 
By employing this selection procedure, the study aimed to maintain the eCE quantification focused on rivers 
where predominantly the floodplain is reworked only by river dynamics, thereby enabling a more accurate 
assessment of the RDFL within the analysis.

Identification of region of interest. Each river under investigation underwent a partitioning process 
into Regions of Interest (ROIs), characterized by homogeneous morphological characteristics. These ROIs rep-
resent the fundamental units for determining (eCE) and are defined by both longitudinal and lateral bounda-
ries. Geomorphological criteria36, such as variations in Horton-Strahler order37, sinuosity, transitions between 
single-thread and multi-thread channels, or abrupt changes in channel width25, were used as indicators to delin-
eate the longitudinal divisions between successive ROIs.

The lateral extension of the ROIs encompasses the adjacent land influenced by the dynamics of the river and 
potential flooding, where the presence and distribution of vegetation are impacted. This active lateral region was 
identified through a two-step process.

Firstly, the spatial gradient in biomass density was taken into account. Areas frequently affected by floods 
or river dynamics are characterized by vegetation that has adapted to withstand these conditions, resulting in a 
successional pattern with specific biomass distributions38. Using a high-resolution biomass map, we were able to 
identify the boundaries between floodplain forests and upland forests, commonly referred to as “tierra-ferma” 
in Amazonian basins (Fig. 3).

Secondly, in instances where delineating lateral boundaries from the biomass map proved challenging, we 
integrated information regarding water surface occurrences from the Global Surface Water (GSW) dataset29 

Fig. 3 Three illustrative examples of carbon density maps derived from the dataset28 are presented, 
showcasing the lateral extension of Regions of Interest (ROIs) demarcated by red solid lines. These maps 
vividly emphasize the recurrent fluvial disturbances affecting floodplain vegetation, which in turn promote 
the continuous rejuvenation of riparian corridors. This process involves the removal of mature vegetation 
and subsequent colonization by seedlings and young trees along bare riverbanks. Consequently, it leads to an 
immature stage with diminished carbon stocks compared to non-flooded mature forests38,56. The discernible 
transition in carbon distribution between the disturbed floodplains and the adjacent terra firma is clearly 
depicted in the carbon map28. This distinct edge serves as the basis for defining the lateral boundaries of the 
ROIs, demarcated by the red lines. The specific locations shown in the figure are: (a) Jurua River; (b) Amazon 
river; and Putamaio River.

https://doi.org/10.1038/s41597-024-03201-7
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(Table 1, dataset number 4). Through this approach, we were able to consistently identify regions that exhibited 
a consistent presence of water in the GSW dataset over the past 35 years, enabling the precise delineation of 
transitional zones between aquatic and terrestrial environments.

It is crucial to recognize that the GSW dataset may not provide precise detection of short-lived events due 
to the requirement of synchronizing observations with cloud-free satellite coverage. The tropical region, par-
ticularly the eastern Amazon Basin, is heavily affected by extensive cloud cover, which results in the omission of 
many intense but short-lived events from the event map developed by ref. 29. As a consequence, our estimations 
of the lateral boundaries of the ROIs tend to be more conservative.

Probabilistic classification model for River-Driven Forest Loss assessment. A probabilistic clas-
sification model was employed in this study to determine the probability of RDFL occurrence for each pixel 
within the ROIs. To achieve this, the Global Forest Change dataset26 was filtered, taking into account three poten-
tial causes of non-RDFL: i) population density, ii) forest fires, and iii) land-cover changes (datasets n.5–7 of 
Table 1). Consequently, for each j-th pixel within the k-th ROI where forest loss was observed, the model evalu-
ated the likelihood that the change in forest cover was not due to urbanization (P jk

u( )), wildfire (P jk
wf( )), or man-made 

land-cover changes (P jk
lc( )), generating three probability maps. For the first map (P jk

u( )), the model uses the spatial 
distribution of Population density as a proxy of the probability that the forest loss was caused by Urbanization, 
while P jk

wf( ) and P jk
lc( ) are based, in each pixel, on the temporal distance between the non-river driven event and the 

year of forest loss.

Forest loss due to urbanization. The values represented in the map P jk
u( ) decrease as the population density PD 

increases. Based on the relationship between human pressure scores and population density in sparsely popu-
lated areas suggested by ref. 39, we implemented the following equation:

=






− . ⋅ + <

≥
P

1 0 333 log(PD 1), for PD 1, 000 people/km
0 for PD 1, 000 people/km (2)

j k,
(u)

2

2

The PD data was obtained from the WorldPop Project Population dataset31–33,40 at a resolution of 100 m (n.6 
of Table 1).

Dataset Description Data source Use in this paper (Section)

1) WHRC Carbon Stock27

A national-level map of above-ground live woody 
biomass density for tropical countries at 500 m 
resolution. This dataset was assembled from a 
combination of co-located field measurements, LiDAR 
observations, and imagery recorded from the Moderate 
Resolution Imaging Spectroradiometer (MODIS).

Baccini (2012)

Estimation of carbon density within regions 
of interest (eCE Computation - Method 
M4), Calibration of model for plant growth 
(SI-Logistic growth model – Method M2), 
(Classification of the biomass distribution 
signature).

2) WHRC Aboveground Live 
Woody Biomass Density28

Global-scale, map of aboveground biomass (AGB) at 
approximately 30-meter resolution. This data product 
expands on the methodology presented in Baccini et 
al. (2012) to generate a global map of aboveground live 
woody biomass density (megagrams biomass ha-1) for 
the year 2000.

Zarin (2016)
Estimation of carbon density within regions of 
interest (eCE Computation – Methods M1, M2, 
M3), Calibration of model for plant growth (SI-
Logistic growth model- Method M2).

3) Global Forest Change26 Results from time-series analysis of Landsat images to 
characterize global forest extent and change.

Hansen (2013)* 
dataset version 1.7 
(2000–2019)

Identification of river-driven forest loss RDFL 
(River selection and data filtering).

4) Global Surface Water29
Maps of the location and temporal distribution of 
surface water from 1984 to 2019 and statistics on the 
extent and changes of those water surfaces.

Pekel (2016)** 
dataset version 1.2 
(2000–2019)

Assessment of wet area within regions of interest 
(ROIs definition).

5) MODIS Burned Area Monthly 
Global 500 m30

The Terra and Aqua combined MCD64A1 Version 6 
Burned Area data product is a monthly, global gridded 
500 m resolution product containing per-pixel burned-
area and quality information.

USGS (2000-2019)
Definition of probability map of river-driven 
forest loss loss P j k

wf
,

( ) (River selection and data 
Filtering).

6) WorldPop Global Project 
Population Data31–33

Global high-resolution, contemporary data on human 
population distributions.

Linard (2012)
Gaughan (2013)
Sorichetta (2015)

Definition of probability map of river-driven 
forest loss loss P j k

u
,

( ) (River selection and data 
Filtering).

7) MODIS Land Cover Type 
Yearly Global 500 m34

The MCD12Q1 V6 product provides global land cover 
types at yearly intervals (2001–2019) derived from six 
different classification schemes.

Biosphere 
Programme 
classification (IGBP)

Definition of probability map of river-driven 
forest loss P j k

lc
,

( ) (River selection and data filtering).

8) Free Flowing Rivers23 Mapping the world’s free-flowing rivers. Grill (2019)
Identification of natural river reaches not 
impacted by human activities CSI (River 
selection and data filtering).

9a)
9b)

HydroATLAS
RiverATLAS35

Comprehensive database presenting a wide range of 
hydro-environmental attributes from existing global 
datasets in a consistent and organized manner.

Linke (2019) Assessment of Strahler index of river reaches 
(River selection and data filtering).

Table 1. List of the global databases used in the present work. *Dataset updated annually, version 1.7 was used 
in this study which analyzes the period 2000–2019. **Dataset updated annually, version 1.3 was used in this 
study which analyzes the period 2000–2019.

https://doi.org/10.1038/s41597-024-03201-7
https://www.nature.com/articles/nclimate1354?message-global=remove&page=3
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13153
https://www.science.org/doi/full/10.1126/science.1244693
https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3;
https://www.nature.com/articles/nature20584?ref=https://githubhelp.com
https://global-surface-water.appspot.com/
https://lpdaac.usgs.gov/products/mcd64a1v006/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031743
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055882
https://www.nature.com/articles/sdata201545
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.nature.com/articles/s41586-019-1111-9
https://www.nature.com/articles/s41597-019-0300-6


8Scientific Data |          (2024) 11:382  | https://doi.org/10.1038/s41597-024-03201-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Forest loss due to forest wildfire or land cover change. To define the maps P jk
wf( ) and P jk

lc( ), the probability that the 
forest loss in a given year has been caused by a non-River-Driven Event (henceforth referred non-RDE) was 
expressed as a function f(Δt), where Δt is the time gap (causal relation principle) between the forest loss and 
non-RDE occurred in the same region (wildfires or land cover changes). The function f(Δt) – i.e., the probability 
that the loss has been caused by a non-RDE – follows a piecewise dependence on time, as reported in Fig. 4.

Essentially, if the forest loss and the non-RDE belong to the same year (i.e., Δt = 0), the causal connection is 
guaranteed, so the function takes the maximum (f = 1). Cases with Δt < 0 imply that the non-RDE anticipated 
a forest loss. In these cases, a positive causal connection may be possible for several reasons. For example: i) 
the non-RDE might have not caused a detectable forest loss in the same year, e.g., a wildfire that irreversibly 
damaged the vegetation which however died in the following months/years; ii) extreme cloudiness of tropical 
region caused a delay in the forest loss detection. In the cases with Δt > 0, forest loss anticipated the non-RDE. 
Albeit counter-intuitive, even in these cases, a positive causal connection can be possible. For example, a slow 
land conversion (e.g., from forest to cropland) that takes some years to cover a portion of territory observable 
through a MODIS-based dataset (coarse resolution 500 m) while was suddenly detected as forest change in the 
Landsat-based products (resolution of 30 m). In each plot performing a forest loss during the observation win-
dow, fire events were detected by using the MODIS-based dataset30. We set

P f t1 ( ),
(3)j k

i

N

i,
(wf)

1
∏= − Δ
=

where N is the number of fires observed during 2000–2019 in the pixel. Where no fires were observed, P 1jk
wf( ) = . 

We remark that this filter excludes the capture of recalcitrant LWD generated by the incomplete combustion of 
biomass during fires, so-called black carbon as analyzed in41. This aspect may be an additional source of under-
estimation of the present eCE assessment. The map P jk

lc( ), namely the likelihood that forest loss is not due to land 
cover change caused by human activity, is generated by using the dataset n.7 in Table 1, MODIS Land Cover 
Type MCD12Q134. Following the classification of the Annual International Geosphere-Biosphere Programme 
(IGBP, Table 1), four land cover macro-classes were identified: Natural

With High vegetation density (NHV), Natural with Low vegetation density (NLV), Anthropic (AN) and 
Water/Unvegetated (UV). NHV class comprise the areas classified as Land Cover – Type 1, as evergreen or 
deciduous needleleaf forest, evergreen or deciduous broadleaf forest, Mixed Forest, closed or open Shrublands, 
grasslands and permanent wetlands; NLV comprises savannas and woody savannas; AN class contains crop-
lands, cropland or natural vegetation mosaics, urban and built-up land; UV encompasses water bodies, per-
manent snow and ice and barren. A per-pixel analysis at MODIS scale was performed in ROIs and each yearly 
variation in land cover macro class was detected and classified. In each pixel, the variations from NHV to NLV, 
from NHV to AN and from NLV to AN were considered due to human activities while all the other changes 
were attributed to river morphodynamic processes (i.e., RDFL).

The probability that the forest loss at pixel k of ROI j was not due to human–induced land cover change is 
therefore defined according to the same equation as Eq. (2) where N is intended as the number of land cover 
transitions observed during the 2000–2019 in the same pixel, while Δt is intended as the time difference between 
the forest loss and the land cover change. When no human-induced land cover variations were detected, 

=P 1jk
lc( ) . For the above reasons, a conservative choice in terms of eCE estimation was to assume that when forest 

loss and non-RDE occurred within the temporal window of five years they were causally connected, so f = 1. The 
result of the filtering procedure for three example cases is shown in Fig. 5.
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Fig. 4 The function f (Δt) Probabilistic classification model for River-Driven Forest Loss assessment.
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assessment of biomass density. Defining the biomass content of areas that have experienced vegetation 
loss due to river dynamics is a key aspect of estimating eCE. Estimating the eCE requires knowledge of the carbon 
density value of the vegetation characterizing the j-th pixel undergoing RDFL at the time of the RDE. Although 
several biomass density satellite products have been made in recent decades, there are currently no globally avail-
able annual time–resolved data with a spatial resolution suitable for studying this process. For this reason, a 
comparison of 4 different indirect approaches based on two different robust biomass maps has been carried out.

Method M1: ρj, k was taken from the WHRC Carbon Stock dataset developed by28 for the above-ground liv-
ing woody biomass density at 30 m resolution for the year 2000 (n.2 of Table 1). In this case, the carbon density 
of a single cell was assumed constant during the entire period of analysis, neglecting the possibility that plots, 
where the loss occurred after the year 2000, might have experienced an increase in the carbon content due to 
growth in the time between 2000 and the year of loss.

Method M2: The value of carbon density of each pixel was adjusted considering the amount of vegetation 
that had grown between the year 2000 and the year of loss, by using a calibrated logistic growth model (see next 
section).

Methods M3 and M4: The value of carbon density of each pixel was approximated using the spatial average over 
the whole ROI (i.e., ρ ρ= ∑ N/j k k j k j, , , being Nj the number of pixels in ROI j) by using the WHRC Carbon Stock 
datasets by ref. 28 for M3 and ref. 27 for M4 (datasets n.2 and n.1 of Table 1, respectively). These datasets describe 
biomass in tropical regions for only a limited period (the year 2000 for n.2 and the period 2007–2008 for n.1).

Tropical rivers are highly dynamic systems that during an inter-decade evolution likely visit most of their 
geomorphological configurations (e.g., the Ucayali River, a tributary of the Amazon River, shows migration 
rates of up to 100 m/year). For methods M3 and M4, we, therefore, adopted an ergodic-like hypothesis42, which 
allowed the temporal mean of carbon density in a single plot to be inferred from its spatial average over the 
whole ROI. It is worth noting that spatial averaging in methods M3 and M4 induces a slight underestimation of 
the eCE (see Table 5), since the erosion mechanism and the consequent capture of biomass usually involve the 
mature bank, where vegetation is at a higher level of growth.

Since the considered datasets only report the above-ground biomass (AGB) density, the belowground biomass 
(BGB) was assessed as BGB = 0.489·AGB0.89 (ref. 43), and the total carbon was estimated as 50% of the total bio-
mass (AGB + BGB). We remark that the relative differences of the eCE estimation among methods M1-M4 does 

Fig. 5 Filtering procedure. (a–c) Satellite images before filtering, with forest loss reported in red. (d–f) The 
same images after filtering, with the probability of River-Driven Forest Loss clustered in four classes (see 
legend).
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NS MM PS BS

Catchment scale

America

Upstream Amazon Basin 66.7% 22.2% 11.1% 0%

Central Amazon Basin 60.0% 30.7% 5.3% 4.0%

Downstream Amazon Basin 27.4% 45.4% 15.1% 12.1%

Others 18.5% 29.6% 38.9% 13.0%

Africa

Upstream Congo Basin 54.3% 28.3% 8.7% 8.7%

Downstream Congo Basin 4.2% 20.8% 70.8% 4.2%

Others 15.9% 6.8% 47.7% 29.6%

Madagascar 0.0% 0.0% 100.0% 0.0%

Asia

New Guinea Island 50.0% 25.0% 25.0% 0.0%

Borneo Island 7.7% 15.4% 61.5% 15.4%

Sumatra Island 25.0% 25.0% 50.0% 0.0%

Malay Peninsula 0% 100.0% 0.0% 0.0%

Others 0% 50.0% 50.0% 0.0%

Continental scale

America 47.9% 29.9% 16.2% 6.0%

Africa 26.7% 16.9% 41.9% 14.5%

Asia 23.5% 26.5% 44.1% 5.9%

Global scale

Tropics 39.0% 25.5% 26.8% 8.7%

Table 2. Results of the classification algorithm and partition of the carbon signature at continental scale. NS: 
negatively skewed; MM: multi-modal; PS: positively skewed; BS: bell-shaped.

Basins eCEA [MgC/km2yr] eCE [TgC/yr] ARDFL [km2/yr]

America

Upstream Amazon 63.6 4.28(34.4%) 295

Central Amazon 24.7 3.13 (25.2%) 212

Downstream Amazon 19.4 1.08 (8.7%) 94

Others 17.2 0.41 (3.3%) 36

Africa

Upstream Congo 53.7 1.65 (13.3%) 118

Downstream Congo 31.8 0.34 (2.8%) 30

Others 10.6 0.18 (1.4%) 21

Madagascar 14.4 0.06 (0.5%) 9

Asia

New Guinea Island 12.9 0.18 (1.4%) 14

Borneo Island 71.3 0.7 (5.6%) 61

Sumatra Island 100.3 0.22 (1.8%) 21

Malay Peninsula 149.8 0.13 (1.0%) 11

Others 20.3 0.09 (0.7%) 8

Major Exporters

River eCE [Tg C/yr] Rivers eCE [Tg C/yr]

Amazon 2.6 (21.2%) Congo 0.37 (2.9%)

Ucayali 1.4 (11.5%) Ubangi 0.32 (2.5%)

Rio Negro 0.42 (3.4%) Lualaba 0.31 (2.5%)

Purus 0.38 (3.1%) Maranon 0.31 (2.5%)

Kapuas 0.37 (3.0%)

Table 3. Estimates of Eco-morphodynamic Carbon Export (eCE) and River-Driven Forest Loss Area (ARDFL) 
for the largest tropical rivers. Values in parentheses indicate the percentage relative to total eCE = 12.45 Tg C/yr. 
Uncertainty analysis is described in Methods.
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not exceed 3.3% (Table 5). Quantitatively, the four different methods, therefore, perform in a very similar way, 
despite they are based on different datasets. For simplicity, the results reported in the main text refer to Method 2.

Calibration of the logistic growth model update in Method M2. The method M2 considers the increase in the 
carbon content due to vegetation growth between the dataset acquisition time (year 2000, ref. 28) and the time of 
forest loss. According to the approach proposed by ref. 44, the increase in carbon content was addressed through 
the calibration of a simplified logistic biomass growth model45,46,

ρ
α ρ ρ= −

d
dt

V( )
(4)

i
i i i I

where ρ represents the biomass carbon density, t is time, V stands for the carrying capacity, which is the maxi-
mum sustainable biomass carbon density, α indicates the growth rate specific to each vegetation species while 
subscript the i refers to the generic i-th cell. Considering the initial values of biomass carbon density the ones 
reported by the dataset28 at year t0 = 2000 (i.e. ρ0, i = ρ(t0)) the formal solution of Eq. (6) at time t = t0 + Δt, for a 
generic species community reads

ρ
ρ

ρ
=

− +

A V

A V( 1) (5)
i

i i i

i i i

0,

0,

where we have defined α= ΔA V texp( )i i i . The function Ai and the parameter Vi were locally calibrated through 
the following procedure. That allows us to use the Eq. (7) to update the value of carbon biomass density from 
t = t0 = 2000 to the time of the cover loss (t t t0= + Δ ), in any cell. The calibration process is based on evaluat-
ing the carbon biomass data from two distinct datasets collected eight years apart (ref. 28, and ref. 27 correspond-
ing to years 2000 and 2008 respectively, labeled as n.2 and n.1 in Table 1). These datasets are comparable because 
they were produced using the same methodology, albeit at different resolutions (30 meters per pixel for ref. 28, 
and 500 meters per pixel for ref. 27). The calibration procedure relies on the comparison of carbon biomass as 
reported by two different datasets with acquisition times eight years apart (ref. 28 and ref. 27 referring to 2000 and 

Data Field Field Definition Field Type Unit

AROI ROI Area Number - Double km2

ARDFL River-driven forest loss area Number - Double km2/yr

Basin code Basin or region identification code Number - Integer —

Basin or region Name Name of the basin or region to which the ROI belongs Text —

Carbon signature code Numerical code to identify carbon signature. 1 = Negatively Skewed, 
2 = Multi-Modal, 3 = Positively Skewed, 4 = Bell-shaped Number - Integer —

Carbon signature description Carbon Signature classes Text —

code River identification code Text —

eCEM1
Eco-morphodynamic carbon export (Method carbon density 
assessment M1) Number - Double TgC/yr

eCEM2
Eco-morphodynamic carbon export (Method carbon density 
assessment M2) Number - Double TgC/yr

eCEM3
Eco-morphodynamic carbon export (Method carbon density 
assessment M3) Number - Double TgC/yr

eCEM4
Eco-morphodynamic carbon export (Method carbon density 
assessment M4) Number - Double TgC/yr

eCEAM1
Eco-morphodynamic carbon export per ROI unit area (Method 
carbon density assessment M1) Number - Double MgC/km yr

eCEAM2
Eco-morphodynamic carbon export per ROI unit area (Method 
carbon density assessment M2) Number - Double MgC/km2 yr

eCEAM3
Eco-morphodynamic carbon export per ROI unit area (Method 
carbon density assessment M3) Number - Double MgC/km2 yr

eCEAM4
Eco-morphodynamic carbon export per ROI unit area (Method 
carbon density assessment M4) Number - Double MgC/km2 yr

FFR Free-flowing classification based on ref. 23 Integer (0 or 1 
value) —

geo Geometric coordinates of the ROI, GeoJSON format. WGS84 datum 
in geographical coordinates, EPSG:4326 Text —

Name River name Text —

roi code Identification code of the ROI within the river reach Text —

State State in which the ROI is contained (for ROIs that border multiple 
states, the state in which the largest area fraction of the ROI falls) Text —

unicode Unique ROI identification code (code concatenated with roi code) Text —

URL Link to Carbon density distribution figure Text —

Table 4. List and description of all the data fields present in the geodatabase.
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2008, respectively n.2 and n.1 in Table 1). The comparison of these two datasets is possible since they were gen-
erated by the same methodology, albeit with different resolutions (30 mpx for ref. 28 and 500 mpx for ref. 27). In 

Methods

Continental eCE (TgC/yr)

Autocorrelation scale Carbon uncertainties

Continental eCE uncertainties (TgC/yr)

America Africa Asia America Africa Asia

M1 8.60 2.20 1.17

500 m

50% ρj, k 0.06 0.03 0.02

75% ρj, k 0.09 0.04 0.03

100% ρj, k 0.12 0.06 0.05

125% ρj, k 0.15 0.07 0.06

ROI scale

50% ρj, k 0.39 0.17 0.13

75% ρj, k 0.51 0.22 0.18

100% ρj, k 0.67 0.29 0.23

125% ρj, k 0.84 0.36 0.29

M2 8.89 2.23 1.25

500 m

50% ρj, k 0.06 0.03 0.02

75% ρj, k 0.09 0.04 0.03

100% ρj, k 0.12 0.06 0.05

125% ρj, k 0.15 0.07 0.06

ROI scale

50% ρj, k 0.39 0.17 0.13

75% ρj, k 0.51 0.22 0.18

100% ρj, k 0.67 0.29 0.23

125% ρj, k 0.84 0.36 0.29

M3 7.91 2.01 1.02 ROI scale Spatial St.Dev. ρ 0.22 0.09 0.06

M4 8.62 2.11 1.01 ROI scale Spatial St.Dev. ρ 0.23 0.09 0.06

Table 5. Results about the aggregated continental eCE (by using the methods M1-M4) and the corresponding 
uncertainties, for the largest tropical free flowing rivers (width > 200 m.).

BS

MF,L < 0.9 FMed or MF,L > 1.1 FMed
and

ML < Med - 400 MgC/km2

MF,R < 0.9 FMed or MF,R > 1.1 FMed
and

MR > Med + 400 MgC/km2

MF,R < 0.9 FMed or MF,R > 1.1 FMed
and

MR > Med + 400 MgC/km2

FALSE

FALSE

FALSE

FALSE

TRUETRUE

TRUE

TRUE TRUE

TRUE

MM

NS

NS

PS

FALSE

SK > 0.4

FALSE

D < 0

PS

FALSE

TRUED > 0

SK < - 0.4

Fig. 6 Carbon signature classification algorithm. The algorithm relies on comparing the statistical parameters 
within each ROI of carbon density distribution (specifically frequency of median value Fmed, median value Med, 
skewness Sk) with the statistical parameters of two sub-samples extracted. These sub-samples are obtained by 
dividing the data of each ROI, using a cutoff set at the median value of the carbon density distribution and are 
referred to as the left- (L) and right- (R) sub-samples. The statistical parameters of sub-samples used for the 
analysis are the frequency of the modes (FML and FMR), the modes (ML and MR), the difference D = FMR – FML. 
Further details about the algorithm are provided by ref. 7.
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the following, the two datasets will be tagged with subscripts 30 and 500, respectively. Firstly, all cells in the 30 m 
resolution dataset were resampled to the 500 m resolution within blocks corresponding to the pixel boundaries 
of the second dataset. Secondly, for each j-th block, we imposed the matching between the mean of the values 
ρ30, i within the block (updated at t = 2008) and the value ρ30, i, namely,

N
1 [ ]

(6)j i

N

i t j
1

30, 2008 500,

j

∑ ρ ρ=
=

=

which, after using Eq. 5, becomes

∣∑
ρ

ρ
ρ

− +
=

=
∆ =N

A V
A V

1
( 1)

,
(7)j i

N
i i i

i i i
t years j

1

0,

0,
8 500,

j

where Nj is the number of 30 m resolution cells in the j-th 500 m resolution block. Thirdly, the assumption was 
made that all cells within every block possess identical values for Ai and V, thus Ai = A is a constant that may be 
extracted from the summation in Eq. (9). Additionally, given that 1/ρ0, i (A-1) �ρ≈ i1/ 0, 1/V, as a first-order 
approximation, we obtain

∣
ρ

ρ
≈ΔA ,

(8)
t

j

M

500,
*

where NM j i
Nj

i
1

1 0,ρ ρ= ∑−
= . Through iterative substitution of Eq. 8 into Eq. 7, a second-order approximation is 

attained:
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Recursive analysis shows that additional approximations result in a cumbersome formula with a continued 
fraction in the denominator of Eq. 9. For practical computational purposes, it is adequate to terminate the pro-
cess at the second step. The carrying capacity was cautiously assumed constant throughout the ROI and equal to 
the maximum value of ρM (namely, V M

maxρ= ). By replacing in Eq. 5, and after recalling that, by definition,

∣ ∣A t A( ) (10)t
t
t* *Δ = Δ Δ

where Δt* = 8 yr is the time lag between the two datasets, one finally gets the relationship for the carbon density 
updated at time t, for each cell:

Fig. 7 Carbon Signatures. Maps of the carbon signature of the world’s largest free-flowing tropical rivers in 
America (a,b), Africa (c–e) and Asia (f–h).
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Carbon signature and classification algorithm. According to ref. 7, the ecological and morphodynamic 
carbon export leaves a distinctive signature on biomass distribution. This is influenced by downstream variations 
in waterlogging duration (hydroperiod) and the fluvial platforms.

In single-thread meandering rivers with high migration rates, mature forests are eroded laterally, while sed-
iment deposition provides fertile ground for young vegetation to establish. The short hydroperiod allows the 
forest to reach maturity and store large amounts of carbon. Conversely, point bars and bare banks are rapidly col-
onized by seedlings and young trees with high carbon sequestration potential but lower carbon density, resulting 
in a negatively-skewed carbon distribution. In multi-thread rivers, where fluvial disturbances are more pro-
nounced, islands and banks experience varying vegetation dynamics. Under weakly disturbed conditions with 
a short hydroperiod, mature forests populate islands or central bars, while young trees develop along the banks, 
yielding a multi-modal carbon density distribution. With increasing Horton-Strahler order, the hydroperiod 
typically lengthens, inhibiting the development of mature vegetation in island cores, and maintaining the system 
in a juvenile state, resulting in a positively-skewed carbon density distribution.

Through the examination of the WHRC Carbon Stock dataset27 and the application of the clustering algo-
rithm (Fig. 6) proposed by ref. 7, four distinct signatures of fluvial biomorphological activity in biomass distri-
bution were identified within ROIs: negatively-skewed (NS), positively-skewed (PS), multimodal (MM), and 

Fig. 8 Eco-morphodynamic Carbon Export (eCE) of the world’s largest tropical rivers (overall 402 ROIs). 
(a) South America, (b) Northern Argentina, (c) Mexico, (d) Central Africa, (e) Central West Africa, (f) West 
Africa, (g) Southeast Africa, (h) Papua and New Guinea, (i) Southeast Asia, (j) Borneo and Sumatra. Point size is 
proportional to eCE, colors show eCEA. Blue reaches indicate free-flowing streams (CSI index > 95%, after ref. 23). 
(k) Longitudinal sequence of signatures in the frequency distribution for Amazon River corridor biomass density 
(NS: negatively skewed; MM: multimodal; PS: positively skewed.).
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bell-shaped (BS). In the present study, 392 ROIs were analyzed (10 ROIs were excluded because they fell in areas 
not covered by WHRC Carbon Stock dataset27). The results are shown in the Fig. 7m. Moreover, the results 
aggregated at catchment scale are summarized in Table 2.

This study confirms, as observed by ref. 7, that fluvial corridors generally follow an NS-MM-PS pattern as 
the Horton-Strahler number increases37, as is evident in the river analyzed (Fig. 8). These signatures serve as 
proxies for river export capacity and highlight the interplay between sediment transport, flood dynamics, river 
morphology, and carbon transport Table 3.

Data records
The results of the analysis, summarized in the Figs. 7, 8, are stored in an online figshare repository (https://
doi.org/10.6084/m9.figshare.24794295.v220 as a stand-alone table, an ESRI GeoDatabase (created to enable the 
implementation of a WebGIS application) and a GeoPackage (an open, standards-based, platform-independent, 
portable, self-describing, compact format for transferring geospatial information, OGC).

Fig. 9 Graphical user interface of the WebGIS application illustrating the key findings of the study: (a) 
Navigation panel enabling users to set zoom levels and map orientation. (b) Data visualization: in the layer 
Ecomorphodynamic Carbon Pumping point sizes correspond to eCE, colours represent eCEa, and polygons 
denote regions of interest; in the layer Carbon Signature point sizes correspond to eCE, colours represent carbon 
signature classes. (c) Basemap with selectable options for open street map or satellite map views. (d) Legend 
explaining point size and colour codes for the point layers in the Ecomorphodynamic Carbon Pumping group. 
(e) Panel for selecting feature classes to display on the map, providing the option to show points representing 
centroids of regions of interest or polygons defining the ROIs. (f) Query results displaying information 
associated with centroids (eCE and eCEA). (g) Query results presenting information associated with polygons 
(ROI area, eCE M1-M4, carbon signature, and carbon biomass distribution within the ROI).
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The repository follows the FAIR principle of Findability, Accessibility, Interoperability and Reusability of 
data. Specifically, starting from the standalone table and the geometries of the ROI polygons (referenced to the 
WGS84 datum in geographical coordinates, EPSG:4326), an ESRI file geodatabase (see ESRI website for defini-
tions) was created and populated with two feature classes with the same attributes.

A polygon feature class related to the ROIs and a point feature class related to the centroids of each ROI 
polygon (used at smaller map scales in the WebGIS environment, to ensure map readability). The attribute table 
of the ROI feature class contains 22 fields and 402 records. More in detail, the attribute table provides for each 
polygon (i.e. ROI) the main results of the study (eCE, eCEA, carbon signature), general information of the ROI 
(name and identification code of the river of which the ROI is part, code with which to identify other ROI, coor-
dinates of the polygon that define the ROI in GeoJSON format), and the fundamental variable for the analysis 
(Area of river driven forest loss, ROI Area, Carbon Signature). A synthetic description of all available data is 
provided in Table 4. The dataset described above is released under the Creative Commons Attribution licence 
(CC-BY, v. 4.0, Creative Commons licenses).

The geodatabase comprises:

•	 402 river reaches, classified as free-flowing according to ref. 23, embedded in ROIs. The attribute field 
basin identifies, through a numerical code, 13 regions or sub-regions considered geomorphologically 
homogeneous (Table 3).

•	 The Amazon basin and corresponding tributaries can be divided into three geomorphologically homoge-
neous sub-regions. The upstream region (identified with the basin code equal to 1), corresponding to the 
Peruvian-Bolivian Amazon basin, is the most dynamic one (eCE = 4,283 GgC/yr, see Table 3) with high 
levels of sinuosity, bank erosion rate and channel migration. The Lowland Rainforests in such a region are 
heavily influenced by lateral erosion of meandering rivers and new sequential succession forest develops 
on scroll bars very rapidly, while most of the (mature) mosaic vegetation loss is on the outer bank or in the 
short-lived islands47.

•	 The middle region (basin code 2) is characterized by a lower erosion rate and more stable channel banks 
(eCE = 3,132 GgC/yr, see Table 3). Meandering rivers (e.g., such as Purus, Jurua, Jutai) have migration 
rates lower than 0.2 channel-widths/yr48 (because of the low levels of sediment transport) and an eCEA 
between 1.4 and 100 MgC/km2/ yr. The Amazon River corridor of this region is characterized by an 
increase in the recurrence of low-waters, and green grass and shrubs species colonize a rising portion of 
wetlands with the consequent reduction of woody plant communities49. For instance, the Negro river cor-
ridor (a tributary of the Amazon River in Central Amazonia) is characterized by relatively lower biomass 
density where swamp forest (igápo) and white sand vegetation populate stable islands50.

•	 The downstream subregion (e.g. Jurunea, Rio Mapuera, basin code equal to 3) provides the lowest levels 
of eCE in the Amazon basin (eCE = 1,079 GgC/yr see Table 3, eCEA = 19.4 MgC/km2 yr). The Amazon 
River corridor in this region is populated by dish-shape lakes in the floodplain and herbaceous vegetation 
is widespread. Carbon pumping is dominated by recurrent floods, so vegetation remains at the juvenile 
stage and biomass density is usually low ( < 53 MgC/ha). However, the amount of carbon sequestrated 
remains high due to a high river-land connectivity (800 GgC/yr) while eCEA is lower than the upstream 
zone. Other rivers outside the Amazon Basin (Orinoco basin) and rivers of Central America, identified 
for simplicity with a single basin code (4) even though they actually belong to different basins, exported 
407 GgC/yr with eCEA that ranges between 1 and 102 MgC/km2 yr (mean value: 17 MgC/km2).

•	 African eCE is mainly due to the Congo basin, which can be divided in two subregions. The upper region 
(the Upper Congo River and Lowa River), identified with basin code 5, is characterized by dense forests 
with high values of above-ground biomass (120 MgC/ha). The vegetation is here mainly removed by 
overflow and uprooting, the planforms are stable and long-lived and vegetation populates both the flood-
plain and the riparian corridor. In contrast, the central-downstream region of the Congo basin (identified 
with basin code 6) represents one of the world’s most extensive swamp forests, which is supposed to host 
a huge peat deposit (30.6 PgC, ref. 51). Nevertheless, the density of above-ground biomass is modest (66 
MgC/ha) and the mean sequestration capacity is 31 MgC/km2 yr. The remaining African basins, identi-
fied for simplicity with a single basin code (7), export only 177 GgC/yr−1 (Table 3). This is due to a low 
tree cover and aboveground carbon density (39 MgC/ha) that characterize arid and semiarid zones.

•	 The Indonesian and New Guinea forest has a relevant carbon store 18.6 PgC, ref. 27, but it experimented 
with an important conversion from tropical forest to oil palm plantation52. Also, the historically unaltered 
wetland forest has lost ~ 52,000 km2 of cover between 2000 and 201253, probably due to agro-industrial 
land development53. These aspects are not related to fluvial dynamics, and make the assessment of riv-
er-induced forest loss more uncertain (see Table 5). Our assessment of carbon exported by Indonesian 
basins (basin code 9–13) is 1,840 GgC/yr (Table 3) and eCEA ranges between 2.9 and 149.8 MgC/km2yr 
(mean value: 54.4 MgC/km2yr).

•	 The dataset contains the result of carbon signature classification analysis for each ROI analysed. Overall, it 
was observed that 47.9% of observations are NS, 29.9% are PS, 16.2% are MM and 6.0% are BS. The results 
of a statistic analysis at the basin scale are reported in Table 2.

•	 A further set of 115 ROIs, selecting from the rivers classified by ref. 23 as not free-flowing, in order to investi-
gate the extent to which river capacity to export carbon through eCP is influenced by anthropogenic impact. 
The ROIs referring to these watercourses are identified in the geodatabase with the value of the attribute FFR 
equal to zero. Although the probabilistic river-driven forest loss model was developed to classify the level 
of impact of non-riverine activities in forest changes, the high level of anthropogenic alterations can make 
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the result less reliable. For this reason, the analysis of these ROIs is intended only for general comparative 
purposes with respect to the behaviour of free-flowing rivers. We found that, on average, their eCEA was 40% 
lower than free-flowing rivers.

technical Validation
To ensure the reliability of the developed database, we based the entire evaluation procedure exclusively on 
derived and validated satellite products (see section Description of global datasets used in the study and Table 1). 
A probabilistic approach was devised to evaluate the uncertainty surrounding the assessment of eCE. The aggre-
gated assessment of continental eCE for the largest tropical rivers was derived by summing the computed values 
within each ROI across the continent. The uncertainty, denoted by the symbol σ and representing the standard 
deviation, can be calculated at the pixel level using principles from probability theory. The eCE consists of the 
product of two variables, both affected by errors: the river-driven forest loss area and biomass carbon density. 
Hence, these variables can be viewed as random processes. As outlined in the aforementioned filtering process, 
for each pixel, forest loss can be linked to a discrete random variable χj, k with two possible outcomes: 1 with a 
probability of Pj, k (RDFL) or 0 with a probability of 1-Pj, k (non-RDFL). This corresponds to a Bernoulli pro-
cess54, akin to repeated coin flipping, where the mean is equal to Pj, k and the variance is equal to

P P(1 ) (12)j k j k
2

, ,j k,
σ = − .χ

The carbon density, on the other hand, is a continuous random variable with a mean of ρj, k (obtained from meth-
ods M1 to M4) and a standard deviation of σρj k,

. Employing Goodman’s expression55 for the variance of the product 
of two uncorrelated random variables, the error variance of the eCE for pixel (j, k) can be expressed as follows:

σ σ ρ= + −ρA P P[ (1 ) ] , (13)j k j k j k j keCE
2

,
2

,
2

, ,
2

j k j k, ,

where Aj, k is the pixel area. Per-pixel values for 
j k,

σρ  are not explicitly provided in the raw datasets examined in 
this study. Therefore, we made use of various conservative assumptions. These assumptions are grounded in the 
observation that residuals are proportionate to the mean, as also suggested in ref. 27. Accordingly, in M1 and M2, 
we set

σ ρ= ⋅ρ C , (14)j kv ,j k,

with the coefficients of variation Cv ranging between 0.5 and 1.25. In M3 and M4, σρj k,
 was set to a constant value 

throughout the ROI, equal to the standard deviation of all the carbon densities measured inside the ROI, as 
reported in the WHRC Carbon Stock datasets28 for M3, and the dataset by ref. 27 for M4. As a further step, to 
advance in the analysis, the propagation of uncertainty from the pixel to the continental scale necessitates eval-
uating the spatial correlation of the errors. Neglecting this consideration may result in the cancellation of 
per-pixel errors and lead to a substantial underestimation of the overall uncertainty.

In this particular context, conventional utilization of spatial variograms (sense ref. 27), is impractical due to 
the spatial irregularity of Regions of Interest (ROIs), the heterogeneity of biomass caused by river dynamics, and 
the computational constraints, even when implemented in Google Earth Engine (GEE). Hence, following the 
approach outlined in27, we adopted two empirical autocorrelation length-scales (ALS), namely ALS1 set at 500 
meters and ALS2 equivalent to the ROI area. It was conservatively assumed that pixels are perfectly correlated 
within a distance smaller than the ALS and uncorrelated beyond that distance. The dataset was partitioned into 
independent blocks using squares (for ALS1) or ROI polygons (for ALS2), and an upper conservative estimate of 
uncertainties was computed for each block by utilizing all the σeCEj, k values obtained from Goodman’s formula 
within the block. For each method M1 – M4, the uncertainty in eCE at the continental scale, denoted as σcont ALS,

2 , 
was calculated for both ALS values by summing the variance associated with each block within the continent: 

cont ALS i
N

i ALS,
2

,
2σ σ= ∑ , where N is the number of blocks in a continent, and σi ALS,

2  is the variance error associated 
with each block. For methods M3 and M4, errors were assessed solely with ALS2, as in both scenarios, carbon 
density was derived from a spatial average at the ROI scale. Within each block, the variance was computed by 
determining its supremum over the block 

∈
( sup {eCE })
j k

j k
( , ) block

, . By combining methods M1–M4 with the two 
autocorrelation length-scales and considering the four values of Cv for methods M1 and M2, a total of eighteen 
different configurations were examined for uncertainty assessment (refer to Table 5). The most conservative 
configuration (maximum uncertainty) yields a standard deviation (in TgC/yr) and percentage error of 0.84 
(9.78%), 0.36 (16.53%), and 0.29 (24.57%) for South America, tropical Africa, and Asia/Oceania, respectively.

Usage Notes
To allow an easy and visual representation of the eco-morphodynamic carbon processes throughout the tropical 
river network, the main results of the analysis are also visualized and disseminated through a WebGIS applica-
tion available at the following link WebGIS.

From a technical point of view, the WebGIS application was created using the ESRI ArcGIS Instant Apps that 
enable the creation of web apps that make it easy to interact with maps and data, exploiting predefined templates 
to be customised to meet specific requirements. Firstly, both point and polygon feature classes were published on 
a server as web feature layers to be used in the WebGIS application. Secondly, starting from a basic template the 
WebGIS application has been customised to enhance map readability (in terms of symbology and geometries), 
easiness of use and relevance of displayed information.
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The WebGIS - mainly aimed at making both geographical and quantitative data easily accessible - is char-
acterised by a main map where the point dataset is displayed with a bivariate symbology, i.e. in the layer 
Ecomorphodynamic Carbon Pump a colour palette related to eCEa [Mg C/km2 yr], and the size proportional 
to eCE [Tg C/yr], in the layer Carbon Signature point sizes correspond to eCE [Tg C/yr], colours represent car-
bon signature classes. Selecting a point leads to a pop-up window displaying the parameters described before. 
Additionally, the polygon dataset is displayed at larger map scales (to avoid overcrowding the map) enabling the 
visualization of the ROIs and enriching the content of the related pop-up windows with additional parameters 
(a selection of the attributes described in Table 4) and the ROI’s actual carbon density distribution (as histogram 
bars). The user can easily display the layer legends, customize the layer visibility and choose between a satellite 
basemap or a cartographic basemap (based on OpenStreetMap data). The graphical user interface of the WebGIS 
application is shown in Fig. 9.

Code availability
The Java script for the GEE platform generating the row dataset, and the Matlab scripts generating the definitive 
data set are deposited in https://doi.org/10.6084/m9.figshare.24794295.v2, and are freely available.
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