Recently, biometric recognition has become a significant field of research. The concept of cancelable biometrics (CB) has been introduced to address security concerns related to the handling of sensitive data. In this paper, we address unconstrained face verification by proposing a deep cancelable framework called BiometricNet+ that employs random projections (RP) to conceal face images and compressive sensing (CS) to reconstruct measurements in the original domain. Our lightweight design enforces the properties of unlinkability, revocability, and non-invertibility of the templates while preserving face recognition accuracy. We compare facial features by learning a regularized metric: at training time, we jointly learn facial features and the metric such that matching and non-matching pairs are mapped onto latent target distributions; then, for biometric verification, features are randomly projected via random matrices changed at every enrollment and query and reconstructed before the latent space mapping is computed. We assess the face recognition accuracy of our framework on challenging datasets such as LFW, CALFW, CPLFW, AgeDB, YTF, CFP, and RFW, showing notable improvements over state-of-the-art techniques while meeting the criteria for secure cancelable template design. Since our method requires no fine-tuning of the learned features, it can be applied to pre-trained networks to increase sensitive data protection.

Cancelable templates for secure face verification based on deep learning and random projections / Ali, Arslan; Migliorati, Andrea; Bianchi, Tiziano; Magli, Enrico. - In: EURASIP JOURNAL ON INFORMATION SECURITY. - ISSN 2510-523X. - ELETTRONICO. - 1(2024), pp. 1-18. [10.1186/s13635-023-00147-y]

Cancelable templates for secure face verification based on deep learning and random projections

Ali, Arslan;Migliorati, Andrea;Bianchi, Tiziano;Magli, Enrico
2024

Abstract

Recently, biometric recognition has become a significant field of research. The concept of cancelable biometrics (CB) has been introduced to address security concerns related to the handling of sensitive data. In this paper, we address unconstrained face verification by proposing a deep cancelable framework called BiometricNet+ that employs random projections (RP) to conceal face images and compressive sensing (CS) to reconstruct measurements in the original domain. Our lightweight design enforces the properties of unlinkability, revocability, and non-invertibility of the templates while preserving face recognition accuracy. We compare facial features by learning a regularized metric: at training time, we jointly learn facial features and the metric such that matching and non-matching pairs are mapped onto latent target distributions; then, for biometric verification, features are randomly projected via random matrices changed at every enrollment and query and reconstructed before the latent space mapping is computed. We assess the face recognition accuracy of our framework on challenging datasets such as LFW, CALFW, CPLFW, AgeDB, YTF, CFP, and RFW, showing notable improvements over state-of-the-art techniques while meeting the criteria for secure cancelable template design. Since our method requires no fine-tuning of the learned features, it can be applied to pre-trained networks to increase sensitive data protection.
File in questo prodotto:
File Dimensione Formato  
s13635-023-00147-y.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987785