We introduce a framework for data-driven model order reduction of parameterized LTI systems with guaranteed uniform dissipativity. The strategy casts the problem into a multivariate rational fitting scheme that formally preserves the bounded realness of the model response. The formulation relies on the solution of a semi-definite program arising from a rational parameterization based on Bernstein polynomials. The models can be employed in system-level simulations both in the frequency and time domain.

Data-Driven Model Order Reduction of Parameterized Dissipative Linear Time-Invariant Systems / Bradde, Tommaso; Zanco, Alessandro; Grivet-Talocia, Stefano. - STAMPA. - 43:(2024), pp. 152-158. (Intervento presentato al convegno Scientific Computing in Electrical Engineering tenutosi a Amsterdam, The Netherlands nel 11–14 July 2022) [10.1007/978-3-031-54517-7_17].

Data-Driven Model Order Reduction of Parameterized Dissipative Linear Time-Invariant Systems

Bradde, Tommaso;Zanco, Alessandro;Grivet-Talocia, Stefano
2024

Abstract

We introduce a framework for data-driven model order reduction of parameterized LTI systems with guaranteed uniform dissipativity. The strategy casts the problem into a multivariate rational fitting scheme that formally preserves the bounded realness of the model response. The formulation relies on the solution of a semi-definite program arising from a rational parameterization based on Bernstein polynomials. The models can be employed in system-level simulations both in the frequency and time domain.
2024
9783031545160
9783031545177
File in questo prodotto:
File Dimensione Formato  
cnf-2024-scee2022-parameterized.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 439.23 kB
Formato Adobe PDF
439.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
cnf-2024-scee2022-parameterized-author.pdf

embargo fino al 01/03/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 289.2 kB
Formato Adobe PDF
289.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987326