We introduce a framework for data-driven model order reduction of parameterized LTI systems with guaranteed uniform dissipativity. The strategy casts the problem into a multivariate rational fitting scheme that formally preserves the bounded realness of the model response. The formulation relies on the solution of a semi-definite program arising from a rational parameterization based on Bernstein polynomials. The models can be employed in system-level simulations both in the frequency and time domain.
Data-Driven Model Order Reduction of Parameterized Dissipative Linear Time-Invariant Systems / Bradde, Tommaso; Zanco, Alessandro; Grivet-Talocia, Stefano. - STAMPA. - 43:(2024), pp. 152-158. (Intervento presentato al convegno Scientific Computing in Electrical Engineering tenutosi a Amsterdam, The Netherlands nel 11–14 July 2022) [10.1007/978-3-031-54517-7_17].
Data-Driven Model Order Reduction of Parameterized Dissipative Linear Time-Invariant Systems
Bradde, Tommaso;Zanco, Alessandro;Grivet-Talocia, Stefano
2024
Abstract
We introduce a framework for data-driven model order reduction of parameterized LTI systems with guaranteed uniform dissipativity. The strategy casts the problem into a multivariate rational fitting scheme that formally preserves the bounded realness of the model response. The formulation relies on the solution of a semi-definite program arising from a rational parameterization based on Bernstein polynomials. The models can be employed in system-level simulations both in the frequency and time domain.File | Dimensione | Formato | |
---|---|---|---|
cnf-2024-scee2022-parameterized.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
439.23 kB
Formato
Adobe PDF
|
439.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2024-scee2022-parameterized-author.pdf
embargo fino al 01/03/2025
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
289.2 kB
Formato
Adobe PDF
|
289.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987326