A series of neon seeded JET ELMy H-mode pulses is considered from the modeling as well as from the experimental point of view. For two different Ne seeding rates and two different D puffing gas levels the heating power, P-heat, is in the range 22-29.5 MW. The main focus is on the numerical reconstruction of the total radiated power (which mostly depends on the W concentration) and its distribution between core and divertor and of Z(eff)(which mostly depends on the Ne concentration). To model self-consistently the core and the SOL two input parameters had to be adjusted case by case: the SOL diffusivity, D SOL, and the core impurity inward pinch, v(pinch). D-SOL had to be increased with increasing Gamma(Ne) and the level of v(pinch) had to be changed, for any given Gamma(Ne), according to the level of P-heat : it decreases with increasing P-heat. Since the ELM frequency, f(ELM), is experimentally correlated with P-heat, (it increases with P-heat) the impurity inward pinch can be seen as to depend on f(ELM). Therefore, to maintain a low v(pinch) level (i.e. high f(ELM)) Gamma(Ne)/P-heat should not exceed a certain threshold, which slightly increases with the Gamma(D) puffing rate. This might lead to a limitation in the viability of reducing the target heat load by Ne seeding at moderate Gamma(D), while keeping Z(eff) at acceptably low level. (C) 2016 Published by Elsevier Ltd.
High power neon seeded JET discharges: Experiments and simulations / Telesca, G.; Ivanova-Stanik, I.; Zagórski, R.; Brezinsek, S.; Czarnecka, A.; Drewelow, P.; Giroud, C.; Huber, A.; Subba, F.; Wiesen, S.; Wischmeier, M.. - In: NUCLEAR MATERIALS AND ENERGY. - ISSN 2352-1791. - 12:(2017), pp. 882-886. [10.1016/j.nme.2016.10.012]
High power neon seeded JET discharges: Experiments and simulations
Subba, F.;
2017
Abstract
A series of neon seeded JET ELMy H-mode pulses is considered from the modeling as well as from the experimental point of view. For two different Ne seeding rates and two different D puffing gas levels the heating power, P-heat, is in the range 22-29.5 MW. The main focus is on the numerical reconstruction of the total radiated power (which mostly depends on the W concentration) and its distribution between core and divertor and of Z(eff)(which mostly depends on the Ne concentration). To model self-consistently the core and the SOL two input parameters had to be adjusted case by case: the SOL diffusivity, D SOL, and the core impurity inward pinch, v(pinch). D-SOL had to be increased with increasing Gamma(Ne) and the level of v(pinch) had to be changed, for any given Gamma(Ne), according to the level of P-heat : it decreases with increasing P-heat. Since the ELM frequency, f(ELM), is experimentally correlated with P-heat, (it increases with P-heat) the impurity inward pinch can be seen as to depend on f(ELM). Therefore, to maintain a low v(pinch) level (i.e. high f(ELM)) Gamma(Ne)/P-heat should not exceed a certain threshold, which slightly increases with the Gamma(D) puffing rate. This might lead to a limitation in the viability of reducing the target heat load by Ne seeding at moderate Gamma(D), while keeping Z(eff) at acceptably low level. (C) 2016 Published by Elsevier Ltd.File | Dimensione | Formato | |
---|---|---|---|
47961_telesca_paper_final_psi_2016.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Creative commons
Dimensione
467.59 kB
Formato
Adobe PDF
|
467.59 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S2352179116300904-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986906