The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.

An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor / Henderson, S. S.; Bernert, M.; Brezinsek, S.; Carr, M.; Cavedon, M.; Dux, R.; Gahle, D. S.; Harrison, J.; Kallenbach, A.; Lipschultz, B.; Lomanowski, B.; Meigs, A.; O’Mullane, M.; Reimold, F.; Reinke, M. L.; Wiesen, S.; Subba, F.. - In: NUCLEAR MATERIALS AND ENERGY. - ISSN 2352-1791. - 18:(2019), pp. 147-152. [10.1016/j.nme.2018.12.012]

An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor

Subba, F.
2019

Abstract

The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, P-sep, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from approximate to 2% to approximate to 9% as P-sep, is increased from approximate to 2.5 MW to approximate to 7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352179118301601-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986758