We optimize nonlinear Digital Pre-Distorters for VCSEL-MMF links using an End-to-end (E2E) learning architecture focused on TDECQ IEEE specifications for 100 Gbps/lambda. We experimentally demonstrate that our E2E training improves the TDECQ performance by more than 0.8 dB compared to Direct Learning.
TDECQ optimization of VCSEL-MMF nonlinear digital pre-distorters using end-to-end learning / Minelli, Leonardo; Forghieri, Fabrizio; Shahpari, Ali; Shao, Tong; Gaudino, Roberto. - ELETTRONICO. - (2023), pp. 526-529. (Intervento presentato al convegno 49th European Conference on Optical Communications (ECOC 2023) tenutosi a Glasgow (UK) nel 1-5 October 2023) [10.1049/icp.2023.2234].
TDECQ optimization of VCSEL-MMF nonlinear digital pre-distorters using end-to-end learning
Minelli, Leonardo;Gaudino Roberto
2023
Abstract
We optimize nonlinear Digital Pre-Distorters for VCSEL-MMF links using an End-to-end (E2E) learning architecture focused on TDECQ IEEE specifications for 100 Gbps/lambda. We experimentally demonstrate that our E2E training improves the TDECQ performance by more than 0.8 dB compared to Direct Learning.File | Dimensione | Formato | |
---|---|---|---|
ECOC2023_VCSEL_precomp-13.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
4.65 MB
Formato
Adobe PDF
|
4.65 MB | Adobe PDF | Visualizza/Apri |
Minelli-TDECQ.a1.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986687