We optimize nonlinear Digital Pre-Distorters for VCSEL-MMF links using an End-to-end (E2E) learning architecture focused on TDECQ IEEE specifications for 100 Gbps/lambda. We experimentally demonstrate that our E2E training improves the TDECQ performance by more than 0.8 dB compared to Direct Learning.

TDECQ optimization of VCSEL-MMF nonlinear digital pre-distorters using end-to-end learning / Minelli, Leonardo; Forghieri, Fabrizio; Shahpari, Ali; Shao, Tong; Gaudino, Roberto. - ELETTRONICO. - (2023), pp. 526-529. (Intervento presentato al convegno 49th European Conference on Optical Communications (ECOC 2023) tenutosi a Glasgow (UK) nel 1-5 October 2023) [10.1049/icp.2023.2234].

TDECQ optimization of VCSEL-MMF nonlinear digital pre-distorters using end-to-end learning

Minelli, Leonardo;Gaudino Roberto
2023

Abstract

We optimize nonlinear Digital Pre-Distorters for VCSEL-MMF links using an End-to-end (E2E) learning architecture focused on TDECQ IEEE specifications for 100 Gbps/lambda. We experimentally demonstrate that our E2E training improves the TDECQ performance by more than 0.8 dB compared to Direct Learning.
2023
978-1-83953-926-8
File in questo prodotto:
File Dimensione Formato  
ECOC2023_VCSEL_precomp-13.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri
Minelli-TDECQ.a1.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986687