We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.

A lowest order stabilization-free mixed Virtual Element Method / Borio, Andrea; Lovadina, Carlo; Marcon, Francesca; Visinoni, Michele. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - ELETTRONICO. - 160:(2024), pp. 161-170. [10.1016/j.camwa.2024.02.024]

A lowest order stabilization-free mixed Virtual Element Method

Borio, Andrea;Marcon, Francesca;
2024

Abstract

We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.
File in questo prodotto:
File Dimensione Formato  
CAMWA-Art_revised.pdf

embargo fino al 28/02/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
VersionePubblicata.pdf

non disponibili

Descrizione: Versione pubblicata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986478