We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.
A lowest order stabilization-free mixed Virtual Element Method / Borio, Andrea; Lovadina, Carlo; Marcon, Francesca; Visinoni, Michele. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - ELETTRONICO. - 160:(2024), pp. 161-170. [10.1016/j.camwa.2024.02.024]
A lowest order stabilization-free mixed Virtual Element Method
Borio, Andrea;Marcon, Francesca;
2024
Abstract
We initiate the design and the analysis of stabilization-free Virtual Element Methods for the Poisson problem written in mixed form. A Virtual Element version of the lowest order Raviart-Thomas Finite Element is considered. To reduce the computational costs, a suitable projection on the gradients of harmonic polynomials is employed. A complete theoretical analysis of stability and convergence is developed in the case of quadrilateral meshes. Some numerical tests highlighting the actual behaviour of the scheme are also provided.| File | Dimensione | Formato | |
|---|---|---|---|
| CAMWA-Art_revised.pdf Open Access dal 01/03/2025 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										1.29 MB
									 
										Formato
										Adobe PDF
									 | 1.29 MB | Adobe PDF | Visualizza/Apri | 
| VersionePubblicata.pdf accesso riservato 
											Descrizione: Versione pubblicata
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.57 MB
									 
										Formato
										Adobe PDF
									 | 1.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986478
			
		
	
	
	
			      	