In social networks, the influence maximization problem requires selecting an initial set of nodes to influence so that the spread of influence can reach its maximum under certain diffusion models. Usually, the problem is formulated in a two-stage un-budgeted fashion: The decision maker selects a given number of nodes to influence and observes the results. In the adaptive version of the problem, it is possible to select the nodes at each time step of a given time interval. This allows the decision-maker to exploit the observation of the propagation and to make better decisions. This paper considers the adaptive budgeted influence maximization problem, that is, the adaptive problem in which the decision maker has a finite budget to influence the nodes, and each node requires a cost to be influenced. We present two solution techniques: The first is an approximated value iteration leveraging mixed integer linear problems while the second exploits new concepts from graph neural networks. Extensive numerical experiments demonstrate the effectiveness of the proposed approaches.
Math‐based reinforcement learning for the adaptive budgeted influence maximization problem / Fadda, Edoardo; Corso, Evelina Di; Brusco, Davide; Aelenei, Vlad Stefan; Balan, RARES ALEXANDRU. - In: NETWORKS. - ISSN 0028-3045. - 83:3(2024), pp. 547-569. [10.1002/net.22206]
Math‐based reinforcement learning for the adaptive budgeted influence maximization problem
Fadda, Edoardo;Corso, Evelina Di;Brusco, Davide;Aelenei, Vlad Stefan;Rares, Alexandru Balan
2024
Abstract
In social networks, the influence maximization problem requires selecting an initial set of nodes to influence so that the spread of influence can reach its maximum under certain diffusion models. Usually, the problem is formulated in a two-stage un-budgeted fashion: The decision maker selects a given number of nodes to influence and observes the results. In the adaptive version of the problem, it is possible to select the nodes at each time step of a given time interval. This allows the decision-maker to exploit the observation of the propagation and to make better decisions. This paper considers the adaptive budgeted influence maximization problem, that is, the adaptive problem in which the decision maker has a finite budget to influence the nodes, and each node requires a cost to be influenced. We present two solution techniques: The first is an approximated value iteration leveraging mixed integer linear problems while the second exploits new concepts from graph neural networks. Extensive numerical experiments demonstrate the effectiveness of the proposed approaches.File | Dimensione | Formato | |
---|---|---|---|
Networks - 2023 - Fadda - Math‐based reinforcement learning for the adaptive budgeted influence maximization problem.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2985548