In this paper, we propose and analyse a numerical method to solve 2D Dirichlet timeharmonic elastic wave equations. The procedure is based on the decoupling of the elastic vector field into scalar Pressure (P-) and Shear (S-) waves via a suitable Helmholtz– Hodge decomposition. For the approximation of the two scalar potentials we apply a virtual element method associated with different mesh sizes and degrees of accuracy. We provide for the stability of the method and a convergence error estimate in the L 2 -norm for the displacement field, in which the contributions to the error associated with the P- and S- waves are separated. In contrast to standard approaches that are directly applied to the vector formulation, this procedure allows for keeping track of the two different wave numbers, that depend on the P- and S- speeds of propagation and, therefore, for using a high-order method for the approximation of the wave associated with the higher wave number. Some numerical tests, validating the theoretical results and showing the good performance of the proposed approach, are presented.
A virtual element method for the solution of 2D time-harmonic elastic wave equations via scalar potentials / Falletta, Silvia; Ferrari, Matteo; Scuderi, Letizia. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 441:(2024). [10.1016/j.cam.2023.115625]
A virtual element method for the solution of 2D time-harmonic elastic wave equations via scalar potentials
Falletta, Silvia;Ferrari, Matteo;Scuderi, Letizia
2024
Abstract
In this paper, we propose and analyse a numerical method to solve 2D Dirichlet timeharmonic elastic wave equations. The procedure is based on the decoupling of the elastic vector field into scalar Pressure (P-) and Shear (S-) waves via a suitable Helmholtz– Hodge decomposition. For the approximation of the two scalar potentials we apply a virtual element method associated with different mesh sizes and degrees of accuracy. We provide for the stability of the method and a convergence error estimate in the L 2 -norm for the displacement field, in which the contributions to the error associated with the P- and S- waves are separated. In contrast to standard approaches that are directly applied to the vector formulation, this procedure allows for keeping track of the two different wave numbers, that depend on the P- and S- speeds of propagation and, therefore, for using a high-order method for the approximation of the wave associated with the higher wave number. Some numerical tests, validating the theoretical results and showing the good performance of the proposed approach, are presented.File | Dimensione | Formato | |
---|---|---|---|
JCAM_preprint.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2985135