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A virtual element method for the solution of 2D

time-harmonic elastic wave equations via scalar

potentials

Silvia Fallettaa, Matteo Ferraria, Letizia Scuderia

aDipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, Corso
Duca degli Abruzzi 34, Torino, 10129, Italy,

Abstract

In this paper, we propose and analyse a numerical method to solve 2D Dirich-
let time-harmonic elastic wave equations. The procedure is based on the
decoupling of the elastic vector field into scalar Pressure (P -) and Shear (S-)
waves via a suitable Helmholtz-Hodge decomposition. For the approximation
of the two scalar potentials we apply a virtual element method associated
with different mesh sizes and degrees of accuracy. We provide for the stabil-
ity of the method and a convergence error estimate in the L2-norm for the
displacement field, in which the contributions to the error associated with the
P - and S- waves are separated. In contrast to standard approaches that are
directly applied to the vector formulation, this procedure allows for keeping
track of the two different wave numbers, that depend on the P - and S- speeds
of propagation and, therefore, for using a high-order method for the approxi-
mation of the wave associated with the higher wave number. Some numerical
tests, validating the theoretical results and showing the good performance of
the proposed approach, are presented.

Keywords: time-harmonic elastic wave equation, virtual element method,
Helmholtz-Hodge decomposition, scalar potentials.
2020 MSC: 65N12, 65N15, 65N99

1. Introduction

The numerical modelling of elastic waves propagation problems has un-
dergone, in recent years, an increasing interest in many of the mathematical
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and engineering areas such as, for example, geophysics, acoustics and seis-
mology.

We consider the Dirichlet vector time harmonic elastic equation defined
in a 2D bounded homogeneous medium. For its solution, several numerical
methods have been proposed and analysed, among which we mention the
traditional finite differences, the finite element method and the more recent
Virtual Element Method (VEM).

The aim of this paper is to propose a novel approach based on an Helmholtz-
Hodge decomposition of the elastic vector field into two scalar potentials. It
consists in reformulating the vector equation into a couple of scalar equations,
that describe the propagation of P - and S-waves, respectively. These two
equations are coupled by the Dirichlet boundary condition. This approach,
originally proposed in [1] to solve interior soft-scattering elastodynamic prob-
lems by a finite element method, allows for using approximation spaces with
different mesh sizes and degrees of accuracy, related to the P - and S- speeds
of propagation. This turns out to be a great advantage in some applications,
such as elastic propagation in soft tissues, in which P -waves propagate much
faster than S- ones, an aspect that displacement-based methods are not able
to exploit. It is worth mentioning that, more recently, the same approach
has been applied in [2, 3] to traction-free interior elastodynamics problems,
in [4] to solve exterior soft-scattering ones by means of their space-time BIE
representations, and in [5] by means of the coupling of boundary and finite
element methods. To the best of our knowledge, there are no other papers
on such a topic which, according to its interesting properties, is worth to be
investigated further.

The novelty of this paper consists in analyzing the potential approach
for elastodynamic interior problems in the frequency domain, providing for
stability of the variational formulation. Since in this case we cannot make use
of the Fredholm theory, we perform the analysis by proving that the bilinear
form associated with the variational formulation is T-coercive. This tool has
been introduced in [6, 7] and it is particularly suitable to treat problems with
sign-changing coefficients.

For the numerical solution, we apply a VEM and we provide for a con-
vergence error estimate in the L2-norm for the displacement field. By a
careful study, we show that the approximation error of the discrete solution
can be split into two contributions, associated with the P - and S- waves.
This aspect allows us to use different mesh grids and approximation orders
and to retrieve a high accuracy of the global scheme with a low order VEM
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for the approximation of the P - waves which propagate faster than S-ones
and, hence, are associated with a smaller wave number. The choice of using
VEM relies in the possibility of considering meshes whose elements can be
of general shape, and to use local discrete spaces of arbitrarily high order
by maintaining the simplicity of implementation independent of it. Another
advantage of the proposed procedure that we have exploited, is the possi-
bility of using the same discrete spaces and bilinear forms associated with
the VEM for the solution of scalar elliptic problems and, hence, of using the
corresponding codes. We mention that, in literature, VEMs have been al-
ready applied to solve elasticity problems: in [8] for compressible and nearly
incompressible materials in two dimensions, and in [9] for three dimensions;
in [10] with mixed formulation; in [11, 12] for computational guidelines and
in [13] for elastodynamics interior problems. In the latter papers, details
on the implementation of the vector version of VEM for elasticity are de-
scribed, in particular for what concerns the virtual element projection of
the strain tensor, which turns out to be the main challenge with respect to
the scalar VEM. We remark that in our approach this issue is avoided since
the proposed method involves the bilinear forms associated with the scalar
Helmholtz equation, and hence only the guidelines to construct the classical
VEM matrices (see [14] and [15]) are needed.

The paper is organized as follows: in Section 2 we present the model
problem for the time-harmonic elastic equation and its reformulation based
on the Helmholtz-Hodge decomposition of the vector field. We introduce the
variational formulation of the problem and we prove its stability by means of
the T-coercivity property of the associated bilinear form. In Section 3, for the
approximation of the solution of the new problem, we apply a VEM and we
prove the stability and the optimal convergence estimate in the L2-norm for
the displacement field. In Section 4 we describe the algebraic formulation of
the numerical scheme. Finally, in the last section, we present some numerical
tests which confirm the theoretical results. Even if the theoretical analysis
is provided for the polygonal version of the VEM, to highlight the feasibility
of the proposed approach when dealing with curved geometries, in the last
example we apply the curvilinear version of the VEM to a problem defined in
a curved domain. This allows us to avoid the approximation of the geometry
and to retrieve the optimal convergence rate with high approximation orders.

Notation. In what follows, we will use the bold convention to distinguish
vector quantities from scalar ones. Given Ω ⊂ R2 and s ∈ R, we denote
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by Hs(Ω) the standard Sobolev space of order s, and by Hs(Ω) = [Hs(Ω)]2.
Similarly, we denote by (·, ·)L2(Ω) the scalar L2-product in Ω, and by (·, ·)L2(Ω)

the vectorial L2-scalar product therein. Similarly, the corresponding Sobolev
norms ‖ · ‖H1(Ω) and ‖ · ‖H1(Ω) are defined as well. If Γ is a Lipschitz curve,
then we use the angled bracket

〈λ, v〉Γ =

∫
Γ

v(x)λ(x) dΓx

to denote the L2(Γ) inner product and its extension as the H−1/2(Γ)×H1/2(Γ)
duality product. Denoting by u = u(x) = [u1(x), u2(x)]T a vector field, and
v = v(x) a scalar function depending on the space variable x = [x1, x2]T , we
use the following notations for the differential operators

∇v =

[
∂x1v
∂x2v

]
, curl v =

[
∂x2v
−∂x1v

]
, ∆v = ∂2

x1
v + ∂2

x2
v,

divu = ∂x1u1 + ∂x2u2, curlu = ∂x1u2 − ∂x2u1,

and
∆u =

[
∂2
x1
u1 + ∂2

x2
u1, ∂

2
x1
u2 + ∂2

x2
u2

]T
.

2. The model problem

We consider the motion of a homogeneous, isotropic elastic solid occupy-
ing a bounded star shaped domain Ω ⊂ R2 with Lipschitz boundary Γ. The
displacement governing equation in the frequency domain, with the presence
of a body force f and with a prescribed Dirichlet condition g on Γ, can be
written as{

−(λ+ µ)∇(divu(x))− µ∆u(x)− ρκ2u(x) = f(x) x ∈ Ω,

u(x) = g(x) x ∈ Γ,
(1)

where λ > 0 and µ > 0 are the Lamé constants, ρ > 0 is the material
density and κ > 0 is the frequency. We assume f ∈ L2(Ω) and g ∈H1/2(Γ).
To reformulate the vector problem in terms of a couple of scalar potential
equations, following [1] and observing that

∆u = ∇(divu)− curl(curlu),
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we rewrite the partial differential equation in (1) as

−(λ+ 2µ)∇(divu(x)) + µcurl(curlu(x))− ρκ2u(x) = f(x). (2)

Hence, we split the displacement field u by applying the following Helmholtz-
Hodge decomposition

u = ∇ϕP + curlϕS, (3)

in terms of some unknown scalar potentials ϕP , ϕS ∈ H1(Ω). We point out
that the decomposition (3) is not unique since, for any Φ ∈ H1(Ω) such that
∇Φ + curl Φ = 0, the potentials ϕ̃P = ϕP + Φ, ϕ̃S = ϕS + Φ satisfy (3) as
well. The existence of a Helmholtz-Hodge decomposition is guaranteed by
Theorem 3.2 in [16], that we report here for completeness.

Theorem 2.1. Let Ω be open connected, with Lipschitz boundary Γ, and
denote by n the unit normal vector on Γ pointing outside Ω. Then, each
v ∈ L2(Ω) can be decomposed in a unique way with a Helmholtz-Hodge
decomposition of the type v = ∇vP+curl vS, with potentials vP , vS ∈ H1(Ω)
satisfying 

∆vP (x) = div v(x) x ∈ Ω,

(∇vP · n)(x) = (v · n)(x) x ∈ Γ,∫
Γ
vP (x) dΓx = 0,

(4)

and {
∆vS(x) = − curlv(x) x ∈ Ω,

vS(x) = 0 x ∈ Γ.
(5)

In our case, the characterizations (4)-(5) can not be applied to determine
ϕP and ϕS, the functions divu, u · n and curlu being unknown. Therefore,
to construct a suitable decomposition, we start by recalling the following
properties, for a sufficiently smooth potential Φ:

div(∇Φ) = −curl(curl Φ) = ∆Φ, div(curl Φ) = curl(∇Φ) = 0, in Ω,

∇Φ · n = curl Φ · τ ,∇Φ · τ = − curl Φ · n, on Γ,
(6)

τ representing the clockwise oriented tangential directions. By properly ap-
plying (6), equation (2) can be reformulated, in terms of the potentials ϕP

and ϕS, as

−(λ+ 2µ)∇(∆ϕP )− µcurl(∆ϕS)− ρκ2
(
∇ϕP + curlϕS

)
= f , (7)
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and the associated Dirichlet boundary conditions can be equivalently rewrit-
ten as

(∇ϕP + curlϕS) · n = g · n, (∇ϕP + curlϕS) · τ = g · τ ,

i.e.,
∂nϕ

P − ∂τϕS = g · n =: gn, ∂nϕ
S + ∂τϕ

P = g · τ =: gτ .

To reformulate (7) in terms of a couple of scalar PDEs, according to Theorem
2.1 we decompose f = ∇fP + curl fS with fP , fS ∈ H1(Ω), and we easily
obtain the following equivalent problem for the potentials (see Proposition
3.5.1 of [17] for details):

−∆ϕP (x)− ρκ2

λ+ 2µ
ϕP (x) =

1

λ+ 2µ
fP (x), x ∈ Ω,

−∆ϕS(x)− ρκ2

µ
ϕS(x) =

1

µ
fS(x), x ∈ Ω,

∂nϕ
P (x)− ∂τϕS(x) = gn(x), x ∈ Γ,

∂nϕ
S(x) + ∂τϕ

P (x) = gτ (x), x ∈ Γ.

(8)

The first two equations of Problem (8) are Helmholtz equations associated
with the longitudinal and transverse wave numbers

κ2
P =

ρκ2

λ+ 2µ
, and κ2

S =
ρκ2

µ
, (9)

respectively. Formulation (8) is of particular interest in many applications
of physics, for example, when the problem source is a P -wave or a S-wave,
and the knowledge of the propagation of the P - and S-waves generated by
this source is required.

To obtain the variational formulation of Problem (8) we start by multi-
plying the first and second equations by the corresponding components of the
vector function v = (vP , vS) ∈ H1(Ω), we apply the Green formula and we
use the second two equations of (8) to rewrite the normal unknown deriva-
tives on Γ in terms of the tangential ones. In particular, the weak form reads:
find (ϕP , ϕS) ∈H1(Ω) such that

(
∇ϕP ,∇vP

)
L2(Ω)

−
〈
∂τϕ

S, vP
〉

Γ
−κ2

P

(
ϕP , vP

)
L2(Ω)

= 1
λ+2µ

(
fP , vP

)
L2(Ω)

+
〈
gn, v

P
〉

Γ
,

(∇ϕS,∇vS)L2(Ω) + 〈∂τϕP , vS〉Γ −κ2
S(ϕS, vS)L2(Ω)

= 1
µ
(fS, vS)L2(Ω) +

〈
gτ , v

S
〉

Γ
,

(10)
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for all (vP , vS) ∈H1(Ω).
By introducing the bilinear forms a : H1(Ω) × H1(Ω) → R and m :

L2(Ω)× L2(Ω)→ R

a(u, v) = (∇u,∇v)L2(Ω) , m(u, v) = (u, v)L2(Ω) , (11)

we define B,K : H1(Ω)×H1(Ω)→ R

B(ϕ,v) = a(ϕP , vP ) + a(ϕS, vS)−
〈
∂τϕ

S, vP
〉

Γ
+ 〈∂τϕP , vS〉Γ, (12)

K(ϕ,v) = κ2
Pm(ϕP , vP ) + κ2

Sm(ϕS, vS), (13)

and the linear form Lf ,g : H1(Ω)→ R

Lf ,g(v) =
1

λ+ 2µ

(
fP , vP

)
L2(Ω)

+
〈
gn, v

P
〉

Γ
+

1

µ
(fS, vS)L2(Ω)+

〈
gτ , v

S
〉

Γ
. (14)

Hence, we rewrite (10) in the following operator notation: find ϕ ∈ H1(Ω)
such that

B(ϕ,v)−K(ϕ,v) = Lf ,g(v), for all v ∈H1(Ω).

By following [17], we introduce the Hilbert space

V(Ω) = {v = (vP , vS) ∈ L2(Ω) : ∇vP + curl vS ∈ L2(Ω)},

endowed with the norm and semi-norm

‖v‖2
V(Ω) = ‖v‖2

L2(Ω)+
∥∥∇vP + curl vS

∥∥2

L2(Ω)
, |v|2V(Ω) =

∥∥∇vP + curl vS
∥∥2

L2(Ω)
.

Observing that, for v =
(
vP , vS

)
∈ V(Ω), it holds

∇vP + curl vS =

[
div v
− curlv

]
, (15)

it is immediate to deduce that V(Ω) = H(div,Ω) ∩H(curl,Ω), where

H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H(curl,Ω) = {v ∈ L2(Ω) : curlv ∈ L2(Ω)}

and that

‖v‖2
V(Ω) = ‖v‖2

L2(Ω) + ‖ div v‖2
L2(Ω) + ‖ curlv‖2

L2(Ω).
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Following the proof of [1, Lemma 1], it is easy to show that for all ϕ =(
ϕP , ϕS

)
,v =

(
vP , vS

)
∈H1(Ω), it holds

B(ϕ,v) =
(
∇ϕP + curlϕS,∇vP + curl vS

)
L2(Ω)

, (16)

which entails that the bilinear form B is well-defined also in the less regular
space V(Ω). Moreover, combining (15) with (16), for all ϕ,v ∈ V(Ω) it is
possible to rewrite

B(ϕ,v) = (divϕ, div v)L2(Ω) + (curlϕ, curlv)L2(Ω).

Therefore, since for ϕ ∈ V(Ω) it holds B(ϕ,ϕ) = |ϕ|2V(Ω), it appears natural

to define the variational formulation of Problem (8) as follows: find ϕ ∈ V(Ω)
such that

A(ϕ,v) = B(ϕ,v)−K(ϕ,v) = Lf ,g(v) ∀ v ∈ V(Ω). (17)

It is worth to point out, since the canonical injection of V(Ω) into L2(Ω) is
not compact (see [18, Proposition 2.7]), we can not assert that the operator K
is compact and, hence, we can not directly apply the well known Fredholm
theory. To overcome such issue, in the next section we will introduce an
isomorphism T : V(Ω) → V(Ω), that will allow us to prove the stability of
the weak formulation (17). The strategy consists in showing that the new
bilinear form A(ϕ,Tv) can be written as the sum of a coercive bilinear form
and of a bilinear form associated with a compact operator. This procedure
is the main idea of the so called T-coercivity, which has been coined in [6],
and turned out to be particularly useful for problems such as the Maxwell’s
equations in the time-harmonic regime.

2.1. Stability of the weak formulation

In what follows, the notation Q1 > Q2 (resp. Q1 ? Q2) means that Q1

is bounded from above (resp. from below) by cQ2, where c is a positive
constant that may depend on κP and κS but, unless explicitly stated, does
not depend on any other relevant parameter involved in the definition of Q1

and Q2.
We start by providing for the basic definition of the T-coercivity, as given

in [7].
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Definition 2.2. Let H be a Hilbert space. A continuous bilinear form b :
H × H → R is T-coercive if there exists a linear isomorphism T : H → H
such that

|b(u, Tu)| ≥ ‖u‖2
H, ∀ u ∈ H.

In [7, Theorem 1], it has been shown that the T-coercivity is a necessary
and sufficient condition to guarantee the well-posedness for a variational
problem associated with the bilinear form b.

We remark that the T-coercivity can also be extended to allow for com-
pact perturbations of coercive operators (see [19]). This will be the case anal-
ysed in this paper. In particular, we will show that there exists an invertible
operator T : V(Ω)→ V(Ω) such that we can apply the Fredholm theory to
the following transformed problem, equivalent to (17): find ϕ ∈ V(Ω) such
that

A(ϕ,Tv) = Lf ,g(Tv) ∀ v ∈ V. (18)

To this aim, proceeding as in [20], we introduce a projection P : V(Ω) →
V(Ω) such that P : V(Ω)→ L2(Ω) is compact. This is achieved by defining
Pv = ∇ṽP + curl ṽS in terms of the Helmholtz-Hodge decomposition of
v ∈ V(Ω), where ṽP , ṽS ∈ H1(Ω) are solutions of the following Dirichlet
Poisson problems{

∆ṽP (x) = div v(x), x ∈ Ω,

ṽP (x) = 0, x ∈ Γ,

{
∆ṽS(x) = − curlv(x), x ∈ Ω,

ṽS(x) = 0, x ∈ Γ.

By virtue of (6), the following properties hold

div(Pv) = div v, curl(Pv) = curlv, P2 = P. (19)

Moreover, due to the standard theory related to Poisson problems, from (19)
we can easily deduce that

‖Pv‖V(Ω) > ‖Pv‖L2(Ω) + ‖curl(Pv)‖L2(Ω) + ‖div(Pv)‖L2(Ω) > ‖v‖V(Ω).

Further, from standard regularity results for star-shaped domains (see e.g.
[21]), it results that ṽP , ṽS ∈ H1+ε(Ω) with ε > 0. This latter entails Pv ∈
Hε(Ω) and

‖Pv‖Hε(Ω) > ‖ div v‖L2(Ω) + ‖ curlv‖L2(Ω) = |v|V(Ω).

According to (19), the operator T = 2P − I is an isomorphism in V(Ω);
indeed, it satisfies T2 = I and

div(Tv) = div v, curl(Tv) = curlv. (20)
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Proposition 2.3. The projection P : V(Ω)→ L2(Ω) is compact and Prob-
lem (8) is well-posed, assuming −κ2

P and −κ2
S are not eigenvalues of the

associated homogeneous Laplace problem.

Proof. From the compactness of the standard Sobolev embedding Hε(Ω) ↪→
L2(Ω) (see e.g. [22, Theorem 7.1]), and the continuity of P : V(Ω)→Hε(Ω),
it easily follows that P : V(Ω)→ L2(Ω) is compact.

By using the relations (20) we write

A(ϕ,Tv) = B(ϕ,Tv)−K(ϕ,Tv) = B(ϕ,v)−K(ϕ, (2P− I)v)

= B(ϕ,v)− κ2
P ((Pϕ+ (I−P)ϕ)P , (Pv − (I−P)v)P )L2(Ω)

− κ2
S((Pϕ+ (I−P)ϕ)S, (Pv − (I−P)v)S)L2(Ω)

= B(ϕ,v) + κ2
P ((Pϕ)P , (Pv)P )L2(Ω) + κ2

P (((I−P)ϕ)P , ((I−P)v)P )L2(Ω)

+ κ2
S((Pϕ)S, (Pv)S)L2(Ω) + κ2

S(((I−P)ϕ)S, ((I−P)v)S)L2(Ω)

− 2κ2
P ((Pϕ)P , (Pv)P )L2(Ω) − κ2

P (((I−P)ϕ)P , (Pv)P )L2(Ω)

+ κ2
P ((Pϕ)P , ((I−P)v)P )L2(Ω) − 2κ2

S((Pϕ)S, (Pv)S)L2(Ω)

− κ2
S(((I−P)ϕ)S, (Pv)S)L2(Ω) + κ2

S((Pϕ)S, ((I−P)v)S)L2(Ω)

= B̃(ϕ,v)− K̃(ϕ,v),

where we have defined the auxiliary bilinear forms B̃, K̃ : V(Ω)×V(Ω)→ R,

B̃(ϕ,v) = B(ϕ,v) + κ2
P ((Pϕ)P , (Pv)P )L2(Ω) + κ2

P (((I−P)ϕ)P , ((I−P)v)P )L2(Ω)

+ 2κ2
P ((Pϕ)S, (Pv)S)L2(Ω) + κ2

S((Pϕ)S, (Pv)S)L2(Ω)

+ κ2
S(((I−P)ϕ)S, ((I−P)v)S)L2(Ω) + 2κ2

S((Pϕ)P , (Pv)P )L2(Ω)

− κ2
P (((I−P)ϕ)P , (Pv)P )L2(Ω) + κ2

P ((Pϕ)P , ((I−P)v)P )L2(Ω)

− κ2
S(((I−P)ϕ)S, (Pv)S)L2(Ω) + κ2

S((Pϕ)S, ((I−P)v)S)L2(Ω)

and
K̃(ϕ,v) = 2(κ2

P + κ2
S)(Pϕ,Pv)L2(Ω).
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To show that B̃ is coercive in V(Ω), we write

B̃(ϕ,ϕ) = B(ϕ,ϕ) + κ2
P‖(Pϕ)P‖2

L2(Ω) + κ2
P‖((I−P)ϕ)P‖2

L2(Ω) + 2κ2
P‖(Pϕ)S‖2

L2(Ω)

+ κ2
S‖(Pϕ)S‖2

L2(Ω) + κ2
S‖((I−P)ϕ)S‖2

L2(Ω) + 2κ2
S‖(Pϕ)P‖2

L2(Ω)

− κ2
P (((I−P)ϕ)P , (Pϕ)P )L2(Ω) + κ2

P ((Pϕ)P , ((I−P)ϕ)P )L2(Ω)

− κ2
S(((I−P)ϕ)S, (Pϕ)S)L2(Ω) + κ2

S((Pϕ)S, ((I−P)ϕ)S)L2(Ω)

≥ B(ϕ,ϕ) + κ2
P‖(Pϕ)P‖2

L2(Ω) + κ2
P‖((I−P)ϕ)P‖2

L2(Ω) + κ2
S‖(Pϕ)S‖2

L2(Ω)

+ κ2
S‖((I−P)ϕ)S‖2

L2(Ω).

By using the relation ‖x − y‖2 + ‖x‖2 ≥ 1
2
‖y‖2, the coercivity of B̃ follows

from the following inequality

B̃(ϕ,ϕ) ≥ ‖ divϕ‖2
L2(Ω) + ‖ curlϕ‖2

L2(Ω) +
κ2
P

2
‖ϕP‖2

L2(Ω) +
κ2
S

2
‖ϕS‖2

L2(Ω)

? ‖ϕ‖2
V(Ω).

From the coercivity of the bilinear form B̃, the invertibility of the associated
operator B̃ : V(Ω)→ V(Ω)′ follows. Moreover, by virtue of the compactness

of P : V(Ω)→ L2(Ω), we deduce that K̃ : V(Ω)→ V(Ω)′, associated to the

bilinear form K̃, is a compact operator (see e.g. [20, Proposition 15.3]).

Then B̃ − K̃ is a Fredholm operator, and so it is invertible if and only
if it is injective that is if and only if the solution of (18) is unique. Since
the uniqueness for (18) is equivalent to the uniqueness for (8), we can then
conclude that the dual formulation (8) is well posed if and only if −κ2

P and
−κ2

S are not eigenvalues for the associated homogeneous Laplace problem.

3. Virtual Element Method

Aiming at defining approximation spaces for the P - and S- waves, as-
sociated with different meshes and degrees of accuracy, we introduce two
sequences of unstructured tessellations {Th�}, � = P, S, both representing
coverages of the domain Ω. We denote by E the generic element of {Th�},
and by h� = maxE∈Th� hE the mesh width, hE being the diamenter of E.
Concerning the properties of the above meshes, we assume there exists a
constant % > 0 such that, for each element E ∈ Th� :
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(A.1) E is star-shaped with respect to a ball of radius greater than %hE;

(A.2) the length of any edge of E is greater than %hE.

In what follows we briefly describe the main tools of the VEM, referring
the reader to [23] and [24] for a deeper presentation. Denoting by Pk�(E),
� = P, S, the space of polynomials of degree k� ∈ N associated with an
element E ∈ Th� , we introduce the local polynomial H1-projection Π∇k� :
H1(E)→ Pk�(E), defined such that for w ∈ H1(E):(∇Π∇k�w,∇q)L2(E) = (∇w,∇q)L2(E) ∀ q ∈ Pk�(E),

(Π∇k�w, 1)L2(∂E) = (w, 1)L2(∂E).

Moreover, we consider the local polynomial L2-projection operator Π0
k�

:
L2(E)→ Pk�(E), defined such that for w ∈ L2(E):

(Π0
k�w, q)L2(E) = (w, q)L2(E) ∀ q ∈ Pk�(E). (21)

The local projectors Π∇k� and Π0
k�

can be extended to the global ones Π∇k� :
H1(Ω)→ Pk�(Th�) and Π0

k�
: L2(Ω)→ Pk�(Th�) as follows:(

Π∇k�w
)
|E

= Π∇k�w|E ∀w ∈ H1(Ω),
(
Π0
k�w
)
|E

= Π0
k�w|E ∀w ∈ L2(Ω),

Pk�(Th�) being the space of piecewise polynomials with respect to the decom-
position Th� of Ω.

To describe the virtual element space Qk�
h�

, we preliminarily consider for
each E ∈ Th� the following local finite dimensional augmented virtual space
Q̃k�
h�

(E) and the local enhanced virtual space Qk�
h�

(E) defined as follows:

Q̃k�
h�

(E) =
{
wh� ∈ H1(E) : ∆wh� ∈ Pk�(E), wh� |ei

∈ Pk�(ei), ei ⊂ ∂E
}
,

Qk�
h�

(E) =
{
wh� ∈ Q̃k�

h�
(E) :

(
Π∇k�wh� − Π0

k�wh�
)
∈ Pk�−2(E)

}
.

It has been shown in [23, Proposition 2] that the dimension of Qk�
h�

(E) is

dim(Qk�
h�

(E)) = k�nE +
k�(k� − 1)

2
,

nE being the number of edges of E. In particular, a generic element wh� of
Qk�
h�

(E) is uniquely determined by the following degrees of freedom:

12



• its values at the nE vertices of E;

• its values at k� − 1 internal points on every edge e ⊂ E;

• the k�(k� − 1)/2 moments of wh� against a scaled polynomial basis of
Pk�−2(E), i.e.,

1

|E|

∫
E

wh�(x)q(x) dx ∀ q ∈ Pk�−2(E) with ‖q‖L∞(E) > 1.

Choosing an ordering of the degrees of freedom such that these are indexed
by i = 1, . . . , dim(Qk�

h�
(E)), we introduce the operator dofi : Qk�

h�
(E) → R,

defined as

dofi(wh�) = the value of the i-th local degree of freedom ofwh� .

On the basis of the definition of the local enhanced virtual space, we construct
the global one by

Qk�
h�

=
{
wh� ∈ H1(Ω) : wh�|E ∈ Q

k�
h�

(E) ∀E ∈ Th�
}
.

Since we shall deal with functions in the product spaces

H1(Th) =
∏

E∈ThP

H1(E)×
∏

E∈ThS

H1(E)

and
V(Th) =

∏
E∈ThP

QkP
hP

(E)×
∏

E∈ThS

QkS
hS

(E),

we introduce, for v�h� ∈ H
1(Th�) the broken H1-norm

‖v�h�‖
2
H1(Th� ) =

∑
E∈Th�

‖v�h�‖
2
H1(E),

and, for vh = (vPhP , v
S
hS

) ∈ V(Th), the broken H1- and V-norms

‖vh‖2
H1(Th) =

∑
�=P,S

‖v�h�‖
2
H1(Th� ), ‖vh‖2

V(Th) =
∑

Ẽ∈ThP ∩ThS

‖vh‖2
V(Ẽ)

.

13



We remark that examples of functions belonging to the above mentioned
spaces are

Π∇k (v) = (Π∇kP v
P ,Π∇kSv

S), Π0
k(v) = (Π0

kP
vP ,Π0

kS
vS), v = (vP , vS) ∈H1(Ω)

with Π∇k�v
�,Π0

k�
v� ∈ Pk�(Th�).

Following [24, 14], we approximate the bilinear form a(·, ·) in (11) as
follows:

a�h�(ϕ
�
h� , v

�
h�) =

∑
E∈Th�

(∇Π∇k�ϕ
�
h� ,∇Π∇k�v

�
h�)L2(E)

+ SE
((

Π∇k� − I
)
ϕ�h� ,

(
Π∇k� − I

)
v�h�
)
,

for ϕ�h� , v
�
h�
∈ Qk�

h�
, where SE is a suitable stabilization term defined by

SE(wh� , vh�) =

dim(Qk�
h�)∑

j=1

dofj(wh�)dofj(vh�).

As shown in [25], the discrete bilinear form a�h�(·, ·) satisfies the following
properties:

k�-consistency : for all vh� ∈ Qk�
h�

and for all q ∈ Pk�(Th�) :

a�h�(vh� , q) = a(vh� , q), (22)

H1-stability : for all vh� ∈ Qk�
h�

:

|vh� |2H1(Th� ) > a�h�(vh� , vh�) > |vh�|
2
H1(Th� ). (23)

Similarly, the approximation of the bilinear form m(·, ·) in (11) reads

m�h�(ϕ
�
h� , v

�
h�) =

∑
E∈Th�

(Π0
k�ϕ
�
h� ,Π

0
k�v
�
h�)L2(E)

+ |E|SE
((

Π0
k� − I

)
ϕ�h� ,

(
Π0
k� − I

)
v�h�
)
.

The discrete bilinear form m�h�(·, ·) satisfies:

k�-consistency : for all vh� ∈ Qk�
h�

and for all q ∈ Pk�(Th�) :

m�h�(vh� , q) = m(vh� , q), (24)

L2-stability : for all vh� ∈ Qk�
h�

:

‖vh�‖2
L2(Ω) > m�h�(vh� , vh�) > ‖vh�‖

2
L2(Ω). (25)
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On the ground of the above discrete setting, we approximate the bilinear
forms B,K defined in (12) and (13), respectively, as follows: for ϕh =(
ϕPhP , ϕ

S
hS

)
∈ Vk

h and vh =
(
vPhP , v

S
hS

)
∈ Vk

h, with Vk
h = QkP

hP
×QkS

hS

Bh (ϕh,vh) = aPhP (ϕPhP , v
P
hP

) + aShS
(
ϕShS , v

S
hS

)
−
〈
∂τϕ

S
hS
, vPhP

〉
Γ

+
〈
∂τϕ

P
hP
, vShS

〉
Γ
,

Kh(ϕh,vh) = κ2
Pm

P
hP

(ϕPhP , v
P
hP

) + κ2
Sm

S
hS

(
ϕShS , v

S
hS

)
.

Finally, we define the approximation of the linear operator Lf ,g in (14) as

Lfh,g(vh) =
1

λ+ 2µ

(
fP ,Π0

k∗P
vPhP

)
L2(Ω)

+
〈
gn, v

P
hP

〉
Γ

+
1

µ

(
fS,Π0

k∗S
vShS

)
L2(Ω)

+
〈
gτ , v

S
hS

〉
Γ

(26)

where k∗� = max{1, k� − 2} (see [26]).
Hence, the discrete variational formulation of (17) reads: find ϕh ∈ Vk

h

such that

Ah(ϕh,vh) = Bh(ϕh,vh)−Kh(ϕh,vh) = Lfh,g(vh) for all vh ∈ Vk
h. (27)

It is worth noticing that, in the above formulas, contrary to the terms
associated with the interior domain Ω, whose computation needs the use
of the projectors Π∇k� and Π0

k�
, those associated with the boundary Γ can

be directly computed, the virtual functions and their tangential derivatives
being explicitly known on Γ.

Once the approximation ϕh of ϕ has been computed, we define the dis-
crete displacement field uh as follows

uh = ∇ϕPhP + curlϕShS , (28)

for which the following main result holds.

Theorem 3.1. Let suppose that the solutions fP and fS of (4) and (5),
with datum f , satisfy fP ∈ Hs−1(Ω) and fS ∈ Hs−1(Ω), with s ≥ 3. Let
u ∈Hs(Ω) be the solution of Problem (1) and uh its approximation obtained
by (28), ϕh = (ϕPhP , ϕ

S
hS

) being the solution of (27). Then, the following
convergence estimate holds

‖u− uh‖L2(Ω) .
(
h

min{s,kP }
P + h

min{s,kS}
S

)
‖u‖Hs(Ω)

+ (hP + hS)
(
h

min{s−1,k∗P−1}
P + h

min{s−1,k∗S−1}
S

)
‖f‖Hs−2(Ω).

The proof of Theorem 3.1 is provided in the next section, by collect-
ing intermediate results concerning the stability and the convergence of the
proposed method.
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3.1. Proof of the main result

Proposition 3.2. For all v ∈H1(Ω) it holds

‖v‖V(Ω) > ‖v‖H1(Ω). (29)

Proof. Following the proof of [1, Lemma 1], it is easy to show that for v =
(vP , vS) ∈H1(Ω)

‖v‖2
V(Ω) = ‖v‖2

H1(Ω) + 〈∂τvS, vP 〉Γ − 〈∂τvP , vS〉Γ.

Then, using the Hölder inequality and the trace theorem, we obtain

‖v‖2
V(Ω) ≤ ‖v‖2

H1(Ω) +
∣∣〈∂τvS, vP 〉Γ∣∣+

∣∣〈∂τvP , vS〉Γ∣∣
> ‖v‖2

H1(Ω) + ‖∂τvS‖H−1/2(Γ)‖v
P‖H1/2(Γ) + ‖∂τvP‖H−1/2(Γ)‖v

S‖H1/2(Γ)

> ‖v‖2
H1(Ω) + ‖vS‖H1/2(Γ)‖v

P‖H1/2(Γ) + ‖vP‖H1/2(Γ)‖v
S‖H1/2(Γ)

> ‖v‖2
H1(Ω) + ‖vS‖H1(Ω)‖vP‖H1(Ω) > ‖v‖2

H1(Ω),

where the last inequality follows from the straightforward one A2+B2+AB ≤
3
2
(A2 + B2) for A,B ∈ R. Therefore, the assertion (29) implies that the

immersion H1(Ω) ↪→ V(Ω) is continuous.

Similarly, it is possible to prove that the immersion H1(Th) ↪→ V(Th) is
continuous and hence, for v ∈H1(Th), it holds

‖v‖V(Th) > ‖v‖H1(Th). (30)

From Proposition 3.2, we deduce the following approximation result in
the V(Ω)-norm.

Lemma 3.3. For all v ∈Hs+1(Ω), with s > 0, it holds

‖v − Ih(v)‖V(Ω) >
(
h

min {s,kP }
P + h

min {s,kS}
S

)
‖v‖Hs+1(Ω) , (31)

where Ih : Hs+1(Ω)→ Vk
h is the interpolant operator.

Proof. Estimate (31) follows combining (29) with standard interpolation
properties of VEM spaces in the H1(Ω)-norm (see Remark 3.8 related to
[27, Theorem 3.7]).

We collect in the following lemma some classical approximation results
for polynomials on star-shaped domains (see, for instance, [28] and [29]).
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Lemma 3.4. For all v ∈ Hs+1(Ω) it holds:∥∥v − Π0
k�v
∥∥
L2(Ω)

+ h�
∣∣v − Π0

k�v
∣∣
H1(Th� )

> hmin{s+1,k�+1}
� ‖v‖Hs+1(Ω) , s ≥ 0. (32)

Moreover, for v ∈ V(Ω) it holds (see [30, Theorem 5.1])∥∥v − Π0
kv
∥∥
L2(Ω)

> (hS + hP )‖v‖V(Ω). (33)

Since the operator A = B−K is invertible but not elliptic (and even, not
Fredholm), we can not use standard tools to obtain stability results for its
discrete counterpart Ah. Hence, we consider the slightly different operator
Ā = B + K, for which we are able to prove auxiliary properties that will
allow us to carry out the theoretical analysis for our discrete operator. We
start by showing that Ā is elliptic in V(Ω); indeed, from (16) it follows that
for all ϕ = (ϕP , ϕS) ∈ V(Ω)

Ā(ϕ,ϕ) = B(ϕ,ϕ) +K(ϕ,ϕ)

= ‖ divϕ‖2
L2(Ω) + ‖ curlϕ‖2

L2(Ω) + κ2
P‖ϕP‖2

L2(Ω) + κ2
S‖ϕS‖2

L2(Ω)

≥ |ϕ|2V(Ω) + min {k2
P , k

2
S}‖ϕ‖2

L2(Ω) ? ‖ϕ‖
2
V(Ω).

Therefore, Ā being elliptic and continuous in the V-norm, it is invertible with
continuous inverse. To develop further our theoretical analysis, we introduce
the following regularity assumption for the operator Ā−1:

Ā−1 : L2(Ω)→H1+ε(Ω) is continuous, for some ε > 0,

which is used in the next lemma for the discrete operator Āh = Bh +Kh.

Remark 3.5. The previous assumption is related to the modified bilinear
form Ā, which is associated to the weak formulation of the time-harmonic
Navier problem with the “good” sign. Our assumption is motivated by Sec-
tion 4 of [31], where such a modified operator is defined and analyzed to
obtain wavenumber explicit estimates for the time-harmonic Maxwell equa-
tions.

Lemma 3.6. For any q ∈ V(Ω), there exists one and only one qh ∈ Vk
h

such that
Āh(qh,vh) = Ā(q,vh) for all vh ∈ Vk

h. (34)

Moreover, for some ε > 0, it holds

‖qh‖V(Ω) > ‖q‖V(Ω), ‖q − qh‖L2(Ω) > (hεP + hεS)‖q‖V(Ω). (35)
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Proof. The proof is similar to those of [26, Lemma 4.6] and [32, Theorem 4.1].
In particular, existence and uniqueness of qh ∈ Vk

h, solution of (34), follow
from (23) and (25), which entail the ellipticity and continuity of Āh in V(Ω)
and in Vk

h. Moreover, the first of (35) holds according to the continuity
of the bilinear form Ā in V(Ω). In order to prove the second of (35), we
use a duality argument. We consider w̃ = qh − q ∈ L2(Ω) and we set
w = Ā−1w̃ ∈H1+ε(Ω). Then, for all z ∈ V(Ω), we have

Ā(w, z) = Ā(Ā−1w̃, z) = (ĀĀ−1w̃)(z) = (qh − q, z)L2(Ω). (36)

From the continuity of Ā−1, we obtain

‖w‖H1+ε(Ω) > ‖qh − q‖L2(Ω). (37)

Therefore, by choosing z = qh − q in (36), we can write

‖qh − q‖2
L2(Ω) = Ā(w, qh − q)

= Ā(w − Ih(w), qh − q) + Ā(Ih(w), qh)− Ā(Ih(w), q),

where Ih : H1+ε(Ω)→ Vk
h is the interpolation operator.

Since qh is the solution of (34), we estimate the previous identity as
follows:

‖qh − q‖2
L2(Ω) ≤ |Ā(w − Ih(w), qh − q)| + |Ā(Ih(w), qh)− Āh(Ih(w), qh)|

=: I + II. (38)

From the continuity of Ā, (31), the first of (35) and (37), we have:

I > ‖w − Ih(w)‖V(Ω)‖qh − q‖V(Ω) > (hεP + hεS)‖w‖H1+ε(Ω)‖q‖V(Ω)

> (hεP + hεS)‖ qh − q‖L2(Ω)‖q‖V(Ω). (39)

Moreover, using the continuity of Ā and A, the consistency properties (22)
and (24), together with estimates (30), (31), (32), (33), the first of (35) and
(37), we have:

II ≤ |Ā(Ih(w)− Π0
k(w), qh)| + |Ā(Π0

k(w), qh)− Āh(Π0
k(w), qh)|

+ |Āh(Π0
k(w)− Ih(w), qh)|

> ‖Ih(w)− Π0
k(w)‖V(Th)‖qh‖V(Ω)

>
(
‖Ih(w)−w‖V(Ω) + ‖w − Π0

k(w)‖V(Th)

)
‖qh‖V(Ω)

> (hεP + hεS)‖w‖H1+ε(Ω)‖qh‖V(Ω)

> (hεP + hεS)‖qh − q‖L2(Ω)‖q‖V(Ω). (40)

Finally, we obtain the second of (35) combining (38), (39) and (40).
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In the following theorem we show the validity of the inf-sup condition for
the discrete bilinear form Ah.

Theorem 3.7. For hP and hS small enough, it holds

sup
qh∈Vk

h
qh 6=0

Ah(wh, qh)

‖qh‖V(Ω)

? ‖wh‖V(Ω) ∀wh ∈ Vk
h.

Proof. Let us consider wh ∈ Vk
h, and q ∈ V(Ω) such that q = A∗−1Jwh,

where A∗ : V(Ω)→ V(Ω)′ is the adjoint of A and J : V(Ω)→ V(Ω)′ denotes
the canonical continuous map (Jw)(z) = (w, z)V(Ω). Hence we obtain

A(z, q) = (wh, z)V(Ω), (41)

for all z ∈ V(Ω), with ‖q‖V(Ω) > ‖wh‖V(Ω). Appealing to Lemma 3.6, there
exists qh satisfying

Bh(qh,vh) +Kh(qh,vh) = B(q,vh) +K(q,vh) for all vh ∈ Vk
h

such that (35) holds for some ε > 0. Now, we write

Ah(wh, qh) = Bh(wh, qh) +Kh(wh, qh)− 2Kh(wh, qh)

= B(wh, q) +K(wh, q)− 2Kh(wh, qh)

= B(wh, q)−K(wh, q)− 2Kh(wh, qh) + 2K(wh, q)

= A(wh, q)− 2Kh(wh, qh) + 2K(wh, q)

= A(wh, q)− 2Kh(wh, qh − q) + 2(K −Kh)(wh, q)

=: I + II + III.

From (41), it follows I = ‖wh‖2
V(Ω) and, from the continuity of Kh and (35)

II & −(hεS + hεP )‖wh‖V(Ω)‖q‖V(Ω).

To estimate III, using (24), which implies the polynomial consistency of Kh,
and (33), we deduce that

III > |K(wh − Π0
kwh, q)| + |(Kh −K)(Π0

kwh, q)| + |Kh(wh − Π0
kwh, q)|

> ‖wh − Π0
kwh‖L2(Ω)‖q‖L2(Ω) > (hP + hS)‖wh‖V(Ω)‖q‖V(Ω).

19



Combining the estimates for I, II and III, we get

Ah(wh, qh) ? (1− hεS − hεP − hS − hP )‖wh‖V(Ω)‖q‖V(Ω),

from which, applying the first of (35), we obtain

Ah(wh, qh)

‖qh‖V(Ω)

?
Ah(wh, qh)

‖q‖V(Ω)

? (1− hεS − hεP − hS − hP )‖wh‖V(Ω).

Finally, for hS and hP small enough, the assertion of the theorem is proved.

The following last lemma regards the error associated with the approxi-
mation of the source term f .

Lemma 3.8. Let suppose that the solutions fP and fS of (4) and (5), with
datum f , satisfy fP ∈ Hs−1(Ω) and fS ∈ Hs−1(Ω), with s ≥ 3. Then, for all
vh ∈ Vk

h it holds

|Lf ,g(vh)− Lfh,g(vh)|

> (hP + hS)
(
h

min{s−1,k∗P−1}
P + h

min{s−1,k∗S−1}
S

)
‖f‖Hs−2(Ω)‖vh‖V(Ω),

where k∗� = max{1, k� − 2}.

Proof. From definitions (14), (26) and (21), we can estimate

|Lf ,g(vh)− Lfh,g(vh)|

>
∣∣∣(fP , vPhP − Π0

k∗P
vPhP )L2(Ω)

∣∣∣+
∣∣∣(fS, vShS − Π0

k∗S
vShS)L2(Ω)

∣∣∣
>
∣∣∣(fP − Π0

k∗P
fP , vPhP − Π0

k∗P
vPhP )L2(Ω)

∣∣∣+
∣∣∣(fS − Π0

k∗S
fS, vShS − Π0

k∗S
vShS)L2(Ω)

∣∣∣
> ‖fP − Π0

k∗P
fP‖L2(Ω)‖vPhP − Π0

k∗P
vPhP ‖L2(Ω)

+ ‖fS − Π0
k∗S
fS‖L2(Ω)‖vShS − Π0

k∗S
vShS‖L2(Ω)

>
(
h

min{s−1,k∗P−1}
P ‖fP‖Hs−1(Ω) + h

min{s−1,k∗S−1}
S ‖fS‖Hs−1(Ω)

)
‖vh − Π0

k∗vh‖L2(Ω)

> (hP + hS)
(
h

min{s−1,k∗P−1}
P + h

min{s−1,k∗S−1}
S

)
‖f‖Hs−2(Ω)‖vh‖V(Ω)

where we have denoted by k∗ = (max{s, k∗P},max{s, k∗S}).

From the above preliminaries, we are finally able to prove the main result.
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Proof of Theorem 3.1. Existence and uniqueness of ϕh follow from the dis-
crete inf-sup condition of Theorem 3.7. Let Ih(ϕ) ∈ Vk

h be the interpolant
of ϕ. By virtue of Theorem 3.7 there exists vh ∈ Vk

h such that

‖ϕh − Ih(ϕ)‖V(Ω) >
Ah(ϕh − Ih(ϕ),vh)

‖vh‖V(Ω)

.

Since ϕ and ϕh are solution of (17) and (27) respectively, we have

‖ϕh − Ih(ϕ)‖V(Ω)‖vh‖V(Ω)

> Ah(ϕh − Ih(ϕ),vh) = Ah(ϕh,vh)−Ah(Ih(ϕ),vh)

= Lfh,g(vh)−Ah(Ih(ϕ),vh) +
(
A(ϕ,vh)− Lf ,g(vh)

)
=
(
Lfh,g(vh)− Lf ,g(vh)

)
+A(ϕ− Ih(ϕ),vh) +

(
A(Ih(ϕ),vh)−Ah(Ih(ϕ),vh)

)
.

Then, by using Lemma 3.8, the continuity of A and the same calculations as
in (40), we obtain

‖ϕh − Ih(ϕ)‖V(Ω)‖vh‖V(Ω)

> (hP + hS)
(
h

min{s−1,k∗P−1}
P + h

min{s−1,k∗S−1}
S

)
‖f‖Hs−2(Ω)‖vh‖V(Ω)

+ ‖ϕ− Ih(ϕ)‖V(Ω)‖vh‖V(Ω) +
(
h

min{s,kP }
P + h

min{s,kS}
S

)
‖ϕ‖Hs+1(Ω)‖vh‖V(Ω),

whence the thesis easily follows combining this latter with (31) in the follow-
ing estimate

‖u− uh‖L2(Ω) = |ϕ−ϕh|V(Ω) ≤ ‖ϕ− Ih(ϕ)‖V(Ω) + ‖ϕh − Ih(ϕ)‖V(Ω).

4. Algebraic Formulation

In this section we briefly describe the construction of the final linear
system associated with the numerical scheme (27). We denote by

{
Φ�j
}
j∈S�

,

with � = P, S, the basis functions of the discrete VEM spaces Qk�
h�

, S� being
the index sets related to the associated degrees of freedom.

We re-order and split S� = SΓ
� ∪ SI� , where SΓ

� and SI� denote the sets of
the indices related to the degrees of freedom lying on Γ and in the interior,
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respectively. We then expand each component of the unknown function ϕh =
(ϕPhP , ϕ

S
hS

) ∈ QkP
hP
×QkS

hS
as

ϕ�h�(x) =
∑
j∈S�

ϕ�,jh�Φ�j(x) with ϕ�,jh� = dofj
(
ϕ�h�
)
. (42)

Hence, using the basis functions of Qk�
h�

to test the discrete counterpart of
our model problem, we get

∑
j∈SP

ϕP,jhP aP (ΦP
j ,Φ

P
i )− κ2

P

∑
j∈SP

ϕP,jhP mP (ΦP
j ,Φ

P
i )−

∑
j∈SΓ

S

ϕS,jhS

〈
∂ΦS

j |Γ
∂τ

,ΦP
i |Γ

〉
Γ

=
1

λ+ 2µ
FhP (ΦP

i ) +
〈
gn,Φ

P
i |Γ

〉
Γ
, i ∈ SP

∑
j∈SS

ϕS,jhS aS(ΦS
j ,Φ

S
i )− κ2

S

∑
j∈SS

ϕS,jhSmS(ΦS
j ,Φ

S
i ) +

∑
j∈SΓ

P

ϕhPP ,j

〈
∂ΦP

j |Γ
∂τ

,ΦS
i |Γ

〉
Γ

=
1

µ
FhS(ΦS

i ) +
〈
gτ ,Φ

S
i |Γ

〉
Γ
, i ∈ SS,

where we have set Fh�(Φ�i ) =
(
f �,Π0

k∗�
Φ�i
)
L2(Ω)

(see formula (26)). To write

the matrix form of the above linear system, we introduce the stiffness matrices
A�, the mass matrices M�, the matrices Q� and BPS,BSP whose entries are
defined by

A�ij = a�(Φ
�
j ,Φ

�
i ), M�ij = m�(Φ

�
j ,Φ

�
i ), i, j ∈ S�

Q�ij =
〈

Φ�j |Γ
,Φ�i |Γ

〉
Γ
, i ∈ S�, j ∈ SΓ

�

BPSij =

〈
∂ΦS

j |Γ
∂τ

,ΦP
i |Γ

〉
Γ

, i ∈ SP , j ∈ SΓ
S

BSPij =

〈
∂ΦP

j |Γ
∂τ

,ΦS
i |Γ

〉
Γ

, i ∈ SS, j ∈ SΓ
P

and the right hand side vectors

f� = [Fh�(Φ�i )]i∈S� , gPn = [gP,jn ]j∈SP , gSτ =
[
gS,jτ
]
j∈SS

.

In accordance with the splitting of the set of the degrees of freedom, we con-
sider the block partitioned representation of the above matrices and vectors
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(with obvious meaning of the notation), and we write the linear system as
follows:

AP
ΓΓ − κ2

PMP
ΓΓ AP

ΓI − κ2
PMP

ΓI −BPS O

AP
IΓ − κ2

PMP
IΓ AP

II − κ2
PMP

II O O

BSP O AS
ΓΓ − κ2

SMS
ΓΓ AS

ΓI − κ2
SMS

ΓI

O O AS
IΓ − κ2

SMS
IΓ AS

II − κ2
SMS

II





ϕPΓ

ϕPI

ϕSΓ

ϕSI



=



1
λ+2µ

fPΓ + (QP )TgPn

1
λ+2µ

fPI

1
µ
fSΓ + (QS)TgSτ

1
µ
fSI


in the unknown vectors ϕ� =

[
ϕ�,jh�
]
j∈S�

.

It is worth highlighting that the two solutions ϕP and ϕS are coupled
by means of the matrices BPS and BSP , whose integral entries are defined
on non matching boundary meshes. All the other matrices are associated
with uncoupled scalar Helmholtz problems defined on different polygonal
tessellations of the domain Ω. Hence they are independently computed by
means of standard scalar VEM tools (see [14]).

5. Numerical results

In this section, we apply the proposed method to some boundary value
problems to show its effectiveness and to validate the convergence estimate
of Theorem 3.1. We refer to our approach as scalar VEM, and we compare
it with the classical VEM method applied to the equation (1), which we refer
to as the vector VEM. The corresponding approximate solutions are denoted
by uh (h = (hP , hS)) and uh, respectively, recalling that in the vector case
we can apply the associated VEM defined on a tessellation Th with a unique
choice of the mesh parameter h.

Both approaches have been implemented by in-house MATLAB codes.
In particular, for the scalar case, the local stiffness matrices AP ,AS and the
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mass matrices MP ,MS have been constructed by following the guidelines for
general elliptic second order problems in [14]. For the vector case, we have
used the library VEMLab [33], created to solve Poisson and linear elasticity
problems and available only for VEM with approximation order equal to 1.
In order to solve our problems, we have properly added the contribution due
to the presence of the mass term.

For the generation of the partitioning Th� of the computational domain
Ω, we have used two softwares: Gmsh to construct unstructured conforming
meshes consisting of quadrilaterals (see [34]), and the Voronoi mesher of
PolyMesher (see [35]). In Figure 1 we show some representative meshes used
in the forthcoming numerical tests.

Figure 1: Representative meshes of the square [0, 1]2 (Example 1) obtained by Gmsh (left)
and PolyMesher (middle), and of a L-shaped domain (Example 3) obtained by Gmsh
(right).

We point out that, once the approximate solution ϕh = (ϕPhP , ϕ
S
hS

) ∈
Vk
h of Problem (27) is computed, the displacement field uh of the original

problem must be reconstructed by means of the relation uh = ∇ϕh+curlϕh,
which involves the calculation of the partial derivatives of the numerical
solutions ϕPhP and ϕShS defined in (42). However, since the analytic expression
of these latter is not known, we construct a computable displacement field
uch which, in the interior of each element E, is defined as follows:

uch|E = ∇
(

Π∇kPϕ
P
hP |E

)
+ curl

(
Π∇kSϕ

S
hS |E

)
.

As the forthcoming numerical results will show, this formula allows us to
retrieve the expected convergence rate of the L2-norm error associated to the
displacement solution.

It is worth to point out that, to guarantee an approximation of order k for
the displacement field u, solution of the vector equation (1), it is necessary to
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approximate the two potentials (ϕP , ϕS), solution of the scalar equations (8),
by a method of order k + 1. Despite this aspect, the potential formulation
displays the advantage of using different meshes and approximation orders
for the pressure and shear potentials, thus allowing to adapt each mesh size
to the corresponding wave frequency. For instance, this is crucial when large
values of the ratio κS/κP are considered since, in this case, it is convenient
to use hP larger than hS and/or kP smaller than kS.

Example 1. The purpose of this first test is twofold: to validate the optimal
convergence estimate provided by Theorem 3.1 and to ascertain the so called
patch test, that is to verify that the method is capable of exactly reproducing
polynomial solutions. To this aim, we deal with the boundary value problem
(1) defined in the unit square Ω = (0, 1)2, with parameters λ = µ = ρ = 1
and frequency κ = 1. We consider the source term f = ∇fP + curl fS with

fP (x1, x2) = −x1 − x2, fS(x1, x2) = −x3
2 − 6x2,

the boundary datum g such that the exact solution is

u(x1, x2) = [1 + 3x2
2, 1]T

and the associated scalar potentials are

ϕP (x1, x2) = x1 + x2, ϕS(x1, x2) = x3
2.

We apply the scalar and vector VEM to compute ϕPhP , ϕShS and uh, approxi-
mations of the solutions of Problems (8) and (1), respectively. The numerical
solutions have been obtained by applying the VEM method associated with
each of the two aforementioned meshes of the domain Ω. For simplicity, we
restrict the analysis to the choice hP = hS = h.

In Tables 1 and 2 we report the number of degrees of freedom (dof) of
the scalar VEM with respect to the generic order k and to the mesh size h
associated with the Gmsh and Voronoi meshes, respectively. As we can see,
for a fixed mesh the increase of the dof is approximately linear, while for a
fixed order, it is quadratic. Therefore, in terms of computational cost and
memory saving, it is more efficient to use a high order VEM rather than fine
meshes.

In Figure 2 we show the convergence slopes of the L2-norm error, ob-
tained by applying the scalar and vector VEM, associated with the Gmsh
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h = 0.71 h = 0.35 h = 0.18 h = 0.09 h = 0.04 h = 0.02

k = 1 9 25 81 289 1, 089 4, 225
k = 2 21 65 225 833 3, 201 16, 641
k = 3 45 153 561 2, 145 8, 385 33, 153

Table 1: Example 1. Number of the dof for the scalar VEM space of order k for Gmsh
mesh size h.

h = 0.71 h = 0.40 h = 0.19 h = 0.10 h = 0.05 h = 0.02

k = 1 9 34 130 514 2, 050 8, 194
k = 2 25 99 387 1, 539 6, 147 24, 579
k = 3 45 180 708 2, 820 11, 268 45, 060

Table 2: Example 1. Number of the dof for the scalar VEM space of order k for Voronoi
mesh size h.

mesh (left plot) and with the Voronoi one (right plot). Some choices of the
approximation orders kP and kS for the scalar approach and k for the vec-
tor one have been selected. In particular, for the scalar VEM we consider
decoupled approximation orders kP and kS, properly chosen to retrieve the
expected convergence order. Precisely, we vary kP and kS up to order 2, since
for higher orders the exact solution is computed up to the machine precision,
thus validating the patch-test. As predicted by the theory and confirmed by
the figure, the smallest values which guarantee the optimal convergence order
are kP = 1 and kS = 2. For the vector VEM, the expected convergence order
is obtained by choosing k = 1, while for larger values the polynomial solution
is retrieved up to the machine precision. As Figure 2 shows, for both meshes
the scalar VEM turns out to be slightly more accurate than the vector one.

Example 2. The purpose of this test is to show the relevance of adapting the
mesh sizes and the approximation orders of the scalar VEM to the behaviour
of the potentials ϕP and ϕS, which depend on the associated wave-numbers
κP and κS. To this aim we consider Problem (8) defined in Ω = (0, 1)2 and
with the physical material parameters µ = 5.168e+08 N/m2, λ = 1.715e+10
N/m2 and ρ = 2.320e+03 kg/m3, which correspond to a sandstone layer.
The frequency is κ = 2.000e+04 1/s; the source terms fP and fS and the
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Figure 2: Example 1. L2-norm absolute errors for the scalar and vector VEM with respect
to the Gmsh (left) and Voronoi (right) mesh size h, by varying kP and kS .

Dirichlet datum g are

fP (x1, x2) =
2 cosx1

λ+ 2µ
, fS(x1, x2) = 0, g(x1, x2) =

(
− sinx1 + cosx2

0

)
.

The wave-numbers in the scalar equations are κP = 7.144 1/m, κS = 4.238e+01
1/m (see (9)) and, hence, the associated potentials display relevant different
behaviours, as shown in Figure 3, where their approximations obtained with
kP = kS = 2 and hP = hS = 1.1e-02 are plotted.

Figure 3: Example 2. Behaviour of ϕP (left) and ϕS (right).

In Table 3 we report the absolute errors of ϕPhP and ϕShS obtained with
kP = kS = 2, by fixing hS = 1.1e − 02 and varying hP ∈ {8.8e − 02, 4.4e −
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02, 2.2e− 02}. The error is calculated with respect to the approximate solu-
tion obtained with kP = kS = 2 and a finer mesh sizes h̄P = h̄S = 1.1e− 02.
As we can see, in terms of computational cost given by the number of dof
reported in the last column, the most convenient choice is hP = 4.4e − 02.
Indeed, this mesh size allows us to obtain a satisfying accuracy for both
potentials by saving about the 50% of the dof.

In Table 4 we report the absolute errors of ϕPhP and ϕShS obtained with
fixed mesh sizes hP = hS = 4.4e − 02, by fixing kS = 5 and varying kP ∈
{2, 3, 4}. The error is calculated with respect to the approximate solutions
ϕ̄PhP and ϕ̄ShS obtained with kP = kS = 5 and hP = hS = 4.4e−02. Also in this
case, to obtain a satisfying and comparable accuracy for both potentials, the
most convenient approximation order is the intermediate kP = 3, with a dof
saving of about the 30%. Further, from a comparison of the two Tables 3 and
4 in terms of accuracy on both solutions, we highlight that the advantageous
strategy consists in decoupling the approximation orders and in using the
higher one for the shear wave ϕS.

hP
∥∥ϕPhP − ϕPh̄P∥∥∞ ∥∥ϕShS − ϕSh̄S∥∥∞ dof

8.8e− 02 8.3e− 02 4.1e− 02 67, 138
4.4e− 02 2.5e− 02 2.5e− 02 70, 274
2.2e− 02 2.3e− 02 3.2e− 02 82, 690
1.1e− 02 − − 132, 098

Table 3: Example 2. Absolute errors of ϕP
hP

and ϕS
hS

with kP = kS = 2, by fixing
hS = 1.1e− 02 and varying hP .

kP
∥∥ϕPhP − ϕ̄PhP∥∥∞ ∥∥ϕShS − ϕ̄ShS∥∥∞ dof

2 3.2e− 02 7.3e− 03 24, 002
3 7.2e− 03 5.8e− 03 28, 162
4 9.6e− 03 4.9e− 03 33, 346
5 − − 39, 554

Table 4: Example 2. Absolute errors of ϕP
hP

and ϕS
hS

with hP = hS = 4.4e− 02, by fixing
kS = 5 and varying kP .
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Example 3. In this example we consider Problem (1) with a non-trivial
vector source f , for which the corresponding Helmholtz-Hodge decomposition
f = ∇fP + curl fS is not analytically given. Hence we proceed numerically,
by determining fPhP ∈ Q

kP
hP

and fShS ∈ Q
kS
hS

, VEM approximations of fP and

fS obtained by solving Problems (4) and (5), respectively. These approxi-
mations will be then used in the right hand side term of (8). In particular,
the non-homogeneous Neumann problem in the unknown fP is reformulated
in terms of a standard variational formulation (see, e.g. [36, Theorem 4.1])
and then discretized by the VEM, as follows: find fPhP ∈ Q

kP
hP

such that

aP
(
fPhP , v

P
hP

)
+ 〈1, fPhP 〉Γ〈1, v

P
hP
〉Γ =−

(
div f ,Π0

k∗P
vPhP

)
L2(Ω)

+ 〈f · n, vPhP 〉Γ (43)

for all vPhP ∈ QkP
hP

. Besides, the homogeneous Dirichlet problem in the

unknown fS is reformulated and approximated as (see [24]): find fShS ∈
QkS
hS
∩H1

0 (Ω) such that

aS
(
fShS , v

S
hS

)
=
(

curl f ,Π0
k∗S
vShS

)
L2(Ω)

(44)

for all vShS ∈ Q
kS
hS
∩ H1

0 (Ω). We remark that, proceeding as in [24] and [37],
it is possible to prove that if f �, � = P, S, is smooth enough, then

‖f � − f �h�‖L2(Ω) + h�|f � − f �h�|H1(Ω) > hk�+1
� ‖f‖Hk�+1(Ω).

Therefore, once f �h� has been retrieved, we compute the right hand side (26)
as (recall k∗� = max{1, k� − 2})

(f �h� ,Π
0
k∗�
vh�)L2(Ω) = (Π0

k∗�
f �h� ,Π

0
k∗�
vh�)L2(Ω).

We will show that the numerical procedure adopted for the approximation
of the right hand sides does not affect the convergence order of the global
scheme. To this aim we consider the L-shaped domain Ω = Ω1 \ Ω2 where
Ω1 = (0, 2) × (0, 2) and Ω2 = [0.5, 2) × [0.5, 2), and the parameters µ = 5,
λ = 1, ρ = 10 and κ = 1. The vector source f , whose components are
represented in Figure 4, and the Dirichlet boundary condition g are taken
accordingly to the solution

u(x1, x2) =

[
e−100((x1−0.25)2+(x2−1.75)2)

e−100((x1−1.75)2+(x2−0.25)2)

]
. (45)
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Figure 4: Example 3. Behaviour of the source components f1 (left) and f2 (right).

Figure 5: Example 3. Behaviour of fP
hP

(left) and fS
hS

(right).

In Figure 5 we show the behaviour of fPhP and fShS , approximations of fP

and fS obtained by solving (43) and (44), respectively. We compare the
numerical solutions computed by applying the linear vector VEM and the
second order (kP = kS = 2) scalar one associated to the same tessellation
with mesh size h = hP = hS = 3.19e − 02. In Figures 6 and 7 we plot the
absolute errors of the two entries of the approximate solutions uh and uCh ,
with respect to the exact one. As expected, the maximum absolute error for
the linear vector procedure is of the same order of magnitude of the quadratic
scalar one. Furthermore, we point out that the VEM matrices related to the
solution of (4) and (5) are reused in the subsequent resolution of the scalar
scheme, so that the extra computational cost to retrieve the approximations
of fP and fS is negligible with respect to the overall one.

Example 4. In this last example we aim at showing the feasibility of the
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Figure 6: Example 3. Absolute errors of u1 obtained with the vector VEM (left) and the
scalar VEM (right).

Figure 7: Example 3. Absolute errors of u2 obtained with the vector VEM (left) and the
scalar VEM (right).

scalar approach to deal with curved geometries, by using well-established
tools of the curved VEM for scalar Helmholtz problems. Indeed, for this
test, we have applied the curvilinear version of the VEM used in [26] and,
for the construction of our final linear system, we have used the same VEM
matrices therein involved. This aspect turns out to be an advantage of the
scalar approach with respect to the vector one for which, to the best of
our knowledge, nowadays in literature there are no results related to curved
geometries, either theoretical or numerical.

To test the convergence rate, we consider Problem (1) defined in the unit
disk Ω, with κ = 1, ρ = 1, µ = 1 and λ = 10. We choose f = ∇fP + curl fS
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with

fP (x1, x2) = −24ex2(cosx2 − x2
1 sinx2)− x2

1e
x2 cosx2,

fS(x1, x2) = −2ex1(sinx1 + x2
2 cosx1)− x2

2e
x1 sinx1,

so that the corresponding solution is

u(x1, x2) =

[
2(x1e

x2 cosx2 + x2e
x1 sinx1)

x2
1e
x2(cosx2 − sinx2)− x2

2e
x1(cosx1 + sinx1)

]
and the P− and S− waves are

ϕP (x1, x2) = x2
1e
x2 cosx2, ϕS(x1, x2) = x2

2e
x1 sinx1.

In Figure 8 we plot the absolute L2-norm error of the solutions obtained
with approximation orders kP = kS ∈ {1, 2, 3, 4, 5}, with respect to the
mesh size h = hP = hS. Since the curvilinear VEM permits to avoid the
approximation of the geometry, the error on the solution depends only on
the VEM approximation and, hence, the convergence rate is the expected
optimal one.
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Figure 8: Example 4. L2-norm absolute error for the scalar curved VEM by varying
kP = kS .
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6. Conclusion

In this work, we have proposed a novel approach for the numerical simula-
tion of two dimensional time-harmonic elastodynamics problems. It consists
in reformulating the original PDE in terms of two coupled wave equations
involving, as new unknowns, the P− and S− waves scalar potentials.

We have provided the stability analysis of the scalar system by means
of the (non classical) T-coercivity of the bilinear form associated with the
variational formulation and, for its approximation, we have applied a virtual
element method. Convergence estimates have been derived and confirmed
by numerical test.

This approach turns out to be a valid and competitive alternative to the
vector displacement-based one. In particular, an advantage that we have
highlighted for the scalar formulation is its feasibility in using different ap-
proximation orders and/or mesh sizes of the domain tessellation. This aspect
revealed to be crucial when dealing with materials in which P− and S− waves
are associated to different wave numbers, since it permits to tune the approx-
imation parameters accordingly. Furthermore, from the implementation view
point, the proposed approach allowed us to use the well-established in-house
software developed for standard Helmholtz problems, easily including curved
geometries in the numerical investigation.

As a future development, we aim at extending the analysis of this ap-
proach to curved VEM as well as to exterior elastic problems, combining the
interior VEM with a boundary one, both in the time-harmonic and in the
space-time case. In particular, for the space-time case, we aim at making
use of the numerical scheme for the classical two dimensional wave equation
proposed in [38].
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