In this paper we consider the model of phase relaxation introduced in [22], where an asymptotic analysis is performed toward an integral formulation of the Stefan problem when the relaxation parameter approaches zero. Assuming the natural physical assumption that the initial condition of the phase is constrained, but taking more general boundary conditions, we prove that the solution of this relaxed model converges in a stronger way to the solution of the classical weak Stefan problem.

A convergence result for a Stefan problem with phase relaxation / Recupero, V.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 16:12(2023), pp. 3535-3551. [10.3934/dcdss.2023119]

A convergence result for a Stefan problem with phase relaxation

Recupero V.
2023

Abstract

In this paper we consider the model of phase relaxation introduced in [22], where an asymptotic analysis is performed toward an integral formulation of the Stefan problem when the relaxation parameter approaches zero. Assuming the natural physical assumption that the initial condition of the phase is constrained, but taking more general boundary conditions, we prove that the solution of this relaxed model converges in a stronger way to the solution of the classical weak Stefan problem.
File in questo prodotto:
File Dimensione Formato  
10.3934_dcdss.2023119-2.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 335.9 kB
Formato Adobe PDF
335.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PCsub.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 344.93 kB
Formato Adobe PDF
344.93 kB Adobe PDF Visualizza/Apri
PCacc.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 349.78 kB
Formato Adobe PDF
349.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984956