In this paper we consider the model of phase relaxation introduced in [22], where an asymptotic analysis is performed toward an integral formulation of the Stefan problem when the relaxation parameter approaches zero. Assuming the natural physical assumption that the initial condition of the phase is constrained, but taking more general boundary conditions, we prove that the solution of this relaxed model converges in a stronger way to the solution of the classical weak Stefan problem.
A convergence result for a Stefan problem with phase relaxation / Recupero, V.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 16:12(2023), pp. 3535-3551. [10.3934/dcdss.2023119]
A convergence result for a Stefan problem with phase relaxation
Recupero V.
2023
Abstract
In this paper we consider the model of phase relaxation introduced in [22], where an asymptotic analysis is performed toward an integral formulation of the Stefan problem when the relaxation parameter approaches zero. Assuming the natural physical assumption that the initial condition of the phase is constrained, but taking more general boundary conditions, we prove that the solution of this relaxed model converges in a stronger way to the solution of the classical weak Stefan problem.File | Dimensione | Formato | |
---|---|---|---|
10.3934_dcdss.2023119-2.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
335.9 kB
Formato
Adobe PDF
|
335.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PCsub.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
344.93 kB
Formato
Adobe PDF
|
344.93 kB | Adobe PDF | Visualizza/Apri |
PCacc.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
349.78 kB
Formato
Adobe PDF
|
349.78 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984956