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A CONVERGENCE RESULT FOR A

STEFAN PROBLEM WITH PHASE RELAXATION

VINCENZO RECUPERO

Dedicated to Pierluigi Colli on the occasion of his 65th birthday

Abstract. In this paper we prove consider the model of phase relaxation introduced in [22],
where an asymptotic analysis is performed toward an integral formulation of the Stefan problem
when the relaxation parameter approaches zero. Assuming the natural physical assumption that
the initial condition of the phase is constrained, but taking more general boundary conditions,
we prove that the solution of this relaxed model converges in a stronger way to the solution of
the classical weak Stefan problem.

1. Introduction

Modelling phase-transition phenomena in a substance attaining two phases (e.g. solid and
liquid) in a bounded domain Ω of the space during the time interval [0, T ], one is led to the the
energy balance equation

∂

∂t
(θ + χ)−∆θ = g in Q := Ω× [0, T ], (1.1)

where for simplicity we have normalized to 1 all the physical constants. Here the unknowns
θ = θ(t, x) and χ = χ(t, x) stand respectively for the temperature and the phase function:
(1− χ)/2 represents the solid concentration of the solid portion, (1 + χ)/2 is the concentration
of the liquid portion, and −1 ≤ χ ≤ 1, so that it is allowed the existence of mushy region where
the substance is a mixture of the solid and liquid parts (cf., e.g., [21, p. 99]). In order to describe
the evolution of the system, an equation relating θ and χ is needed. If θ = 0 is the equilibrium
temperature at which the two phases can coexist, then we can take the equilibrium condition of
Stefan type (see, e.g., [21] and the references therein)

χ ∈ sign(θ) in Q, (1.2)

where sign denotes the multivalued sign graph (i.e. sign(r) := −1 if r < 0, sign(r) := [−1, 1] if
r = 0, sign(r) := 1 if r > 0). Problem (1.1)–(1.2) is usually called Stefan problem. Notice that
(1.2) could be written in the equivalent form

sign−1(χ) 3 θ in Q, (1.3)

sign−1 being the inverse relation of the multivalued sign graph (sign−1(r) := 0 if r ∈ ]−1, 1[,
sign−1(−1) := ]−∞, 0], sign−1(1) := [0,∞[).

If dynamic supercooling or superheating effects are to be taken into account, then condition
(1.3) is usually replaced by the following relaxation dynamics for the phase variable χ (cf., e.g.,
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[20, 21] and their references)

ε
∂χ

∂t
+ sign−1(χ) 3 θ in Q, (1.4)

ε being a small kinetic positive parameter. Alternatively, the relaxation dynamics can also be
modeled by the inclusion

ε
∂χ

∂t
+ χ ∈ sign(θ) in Q, (1.5)

which is not equivalent to (1.4).
The Stefan problem (1.1)–(1.2) and the Stefan problems with phase relaxation (1.1), (1.4)

and (1.1), (1.5) have been extensively studied: see, e.g., [7, 8, 21] for (1.1)–(1.2), [7, 20, 5, 8, 21]
for (1.1), (1.4), and [22, 15] for (1.1), (1.5). In particular in [20], uniqueness and existence of
(1.1), (1.4), coupled with suitable initial-boundary conditions, are proved in the framework of
the Sobolev spaces, and the solution of the relaxed problem is shown to converge, in a suitable
topology, to the solution of the problem (1.1)–(1.2) as ε ↘ 0. Problem (1.1), (1.5) instead is
dealt with in [15] where existence, uniqueness, and asymptotic analysis to the Stefan prblem
are studied within the same Sobolev setting. Let us also observe that the Stefan problem with
phase relaxation can also be studied taking into account a hyperbolic energy balance yielding a
finite speed of propagation for the temperature field (see, e.g., [20, 18, 19, 6, 16, 17]).

Though models (1.1), (1.4) and (1.1), (1.5) are very natural from the analytic point of view,
they have some modelling drawbacks. Indeed, as observed in [22], in (1.4) the rate of the phase
χ does not depend on χ, because the term sign−1 only represents a constraint for the phase, and
in (1.5) the phase depends only on the sign of the temperature θ. One would expect instead
that the rate of χ decays as χ approaches 1 and that it also decays as θ tends to 0. In order to
overcome this difficulties, in [22] the following relaxation dynamics is proposed:

ε
∂χ

∂t
= ψ(θ, χ) in Q (1.6)

for a suitable class of regular functions ψ : R2 → R which are increasing in θ, decreasing in χ,
and such that ψ(θ, χ) = 0 if and only if χ ∈ sign(θ), or more generally

ψ(θ, χ) = 0 if and only if χ ∈ α(θ), (1.7)

where α is a generic linearly bounded maximal monotone operator in R, i.e. a continuous
increasing graph in R2 (cf., e.g, [4], however in the next section we will provide all the precise
definitions needed in the paper). An example, provided in [22], is

ψ(θ, χ) = p(θ+)
1− χ

2
+ p(−θ−)

1− χ
2

,

where θ+ = max{θ, 0}, θ− = max{−θ, 0}, and p : R −→ [−1, 1] is a function such that
π+ = p(θ+) (respectively π− = −p− (θ−)) represents the probability of melting a solid particle
(respectively “crystallizing a liquid particle”) in the unit time, with p(r)r > 0 for every r 6= 0.

In [22] the model of phase relaxation (1.1), (1.6) is coupled with zero Dirichlet boundary
conditions for the temperature, and it is shown that solution of the relaxed problem (1.1), (1.6)
converges in suitable way to a solution of a rather weak formulation of the Stefan problem (1.1),
(1.4). To be more precise it is shown that as ε approaches zero along a suitable subsequence,
then the solution of the relaxed problem converges to a solution of a time-integral formulation of
the Stefan problem (1.1), (1.4), and in general this weaker formulation has not a unique solution.
The setting adopted in [22] makes the proofs nontrivial and L1-techniques are needed.

The aim of our present paper is to perform the asympotic analysis as ε approaches zero of the
model of phase relaxation (1.1), (1.6) in the case of a bounded graph α (which is physically very
natural, e.g. α = sign), but assuming more general boundary conditions for the temperature θ.
In this way we are able to use L2-techniques, we obtain a stronger convergence along the entire
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family ε (and not along a subsequence), and we find that the limit problem is actually (1.1),
(1.4), so that it has a unique solution.

To be more precise concerning our results, we assume that α is a bounded maximal monotone
operator α : R → P(R) and we supply the system (1.1), (1.6) with the rather general initial-
boundary conditions described as follows: letting {Γ0,Γ1} be a partition of the boundary of Ω
into two measurable sets, we take

θ = θD on Γ0 × [0, T ], (1.8)

∂nθ = −θN on Γ1 × [0, T ], (1.9)

θ(·, 0) + χ(·, 0) = θ0 + χ0 in Ω, (1.10)

where θD, θN , θ0, χ0 are given functions and n is the outward unit vector normal to the boundary
of Ω. If we assume that θD is a sufficiently smooth function defined on the cylinder Q, that
θN : Γ1 × [0, T ] −→ R is regular enough, and that there is a function u : Q −→ R such that
u = ∆u in Q, u = θD on Γ0 × [0, T ], and u = θN on Γ1 × [0, T ] and we set θ0 := θ0 − θD(0).
Hence we rewrite all the equations in the new unknown θ := θ − u so that the problem (1.1),
(1.6), (1.8)–(1.10) reads, writing again θ instead of θ for simplicity,

∂

∂t
(θ + χ)−∆θ = g − ∂u

∂t
+ ∆u in Q, (1.11)

ε
∂χ

∂t
= ψ(θ + u, χ) in Q, (1.12)

θ = 0 on Γ0 × [0, T ] (1.13)

∂nθ = 0 on Γ1 × [0, T ], (1.14)

θ(·, 0) + χ(·, 0) = θ0 + χ0 in Ω. (1.15)

This formulation has the advantage that the boundary conditions for θ are homogeneus and the
wider generality is incorporated in the u-terms in the right-hand side of the balance equation
and in the non-linearity ψ. As described above, by means of L2-techinques, we will prove that
the only solution of (1.11)–(1.15) converges to the solution of (1.11), (1.13)–(1.15) coupled with

χ ∈ α(θ + u) in Q

as ε→ 0 (not only along a suitable subsequence).
The plan of the paper is the following. In Section 2 we list the precise assumptions on the data

of the problem and we state our main results. In Section 3 we analyze the relaxed problem (1.11)–
(1.15). In the final Section 4 we perform the asymptotic analysis as the relaxation parameter ε
goes to zero.

2. Main results

In this section we give the variational formulation of the problems presented in the Introduc-
tion and we state our main results.

The set of integers greater than or equal to 1 will be denoted by N. Given p ∈ [1,∞[, a
measure space D, and a real Banach space B, then the space of B-valued functions on D which
are p-integrable will be denoted by Lp(D;B); the vector space of essentially bounded B-valued
functions on D is denoted by L∞(D;B). These spaces will be endowed with their natural norms

defined by ‖v‖Lp(D;B) :=
(∫
D ‖v(x)‖pB dx

)1/p
. If p = 2 and B = E is a Hilbert space then this

norm is induced by the inner product (v1, v2)L2(D;E) =
∫
D(v1(x), v2(x))E dx, where (·, ·, )E is the

inner product in E. For the theory of integration of vector valued functions we refer, e.g., to [12,
Chapter VI]. We will simply set Lp(D) := Lp(D;R) for p ∈ [1,∞]. If n ∈ N,the n-dimensional
Lebesgue measure of a set D ⊆ Rn will be denoted by |D|. The locutions ”almost every” and
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”almost everywhere” (”a.e.”) will always refer to the Lebesgue measure. If D ⊆ Rn is open,
we will make use of the Sobolev space H1(D) := {v ∈ L2(D) : ∂iv ∈ L2(D), i = 1, . . . , n}
where ∂iv denotes the partial derivative of v with respect to the i-th variable in the sense of
distributions (cf., e.g., [1]). The symbol ∇ will denote the distributional gradient operator so
that H1(D) is a real Hilbert space if it is endowed with the inner product

(v1, v2)H1(D) :=

∫
D
v1(x)v2(x) +

∫
D
∇v1(x) · ∇v2(x), v1, v2 ∈ H1(D), (2.1)

which induces the usual norm ‖ ·‖H1(D). If ∂D is of Lipschitz class and if Γ0 is open in ∂D, then

the restriction operator C∞(D) −→ C(Γ0) : v 7−→ v|Γ0 can be uniquely continuosly extended
to a linear continuous operator γΓ0 : H1(D) −→ L2(Γ0), where Γ0 is endowed with the (n− 1)-
dimensional surface (Hausdorff) measure (see, e.g., [13, 11]). The notation v|Γ0 := γΓ0(v) is
commonly used for a function v ∈ H1(D). If a, b ∈ R, a < b, we set Lp(a, b;B) := Lp(]a, b[ ;B)
for p ∈ [1,∞] and H1(a, b;B) := {f ∈ L2(a, b;B) : f ′ ∈ L2(a, b;B)}, where g′ denote the
distributional derivative of a function g : ]a, b[ −→ B, and the norm ‖f‖H1(a,b;B) := ‖f‖L2(a,b;B)+

‖f ′‖L2(a,b;B) is used. For the main properties of the Sobolev space H1(a, b;B) we refer, e.g., to
[4, Appendix]. Now we can present our first set of assumptions.

Assumptions 2.1. The following conditions will be used in the paper.

(H1) Ω ⊆ Rn is a bounded open connected set with Lipschitz boundary Γ := ∂Ω. Γ0 and Γ1

are open subsets of Γ such that Γ0 ∩Γ1 = ∅. If Γ0 and Γ1 denote the closures of Γ0 and
Γ1 in Γ, then we assume that Γ0 ∪ Γ1 = Γ and that Γ0 ∩ Γ1 is of Lipschitz class. We
define

H := L2(Ω), (2.2)

V := H1
Γ0

(Ω) := {v ∈ H1(Ω) : v|Γ0 = 0}, (2.3)

endowed with their usual inner products, in particular V is endowed with the inner
product induced by (2.1). If V ′ denotes the topological dual space of V , we define the
linear continuous operator A : V −→ V ′ by

V ′〈Av1, v2〉V :=

∫
Ω
∇v1 · ∇v2, v1, v2 ∈ V, (2.4)

where V ′〈·, ·〉V denotes the duality between V ′ and V . The final time of the evolution
will be denoted by T > 0 and we set Q := Ω×]0, T [.

(H2) We are given

ψ : R2 −→ R Lipschitz continuous with Lipschitz constant L. (2.5)

(H6) For every ε > 0 we are given

fε ∈ L1(0, T ;H) + L2(0, T ;V ′) uε ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;V ′), (2.6)

and we define the norm

‖h‖L1(0,T ;H)+L2(0,T ;V ′) := ‖h‖L1(0,T ;H) + ‖g‖L2(0,T ;V ′),

for every h ∈ L1(0, T ;H) + L2(0, T ;V ′).

(H7) For every ε > 0 we are given

θ0ε ∈ L2(Ω) χ0ε ∈ L2(Ω). (2.7)

Remark 2.1. Let us observe that in assumption (H1), (H2) we do not require that the (n− 1)-
dimensional Hausdorff measure of Γ0 is strictly positive.
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Let us recall that V ⊂ H ⊂ V ′ with dense and compact embeddings, where V ′ is endowed
with its dual norm induced by V and we have identified H with its dual, thus

V ′〈e, v〉V = (e, v)H ∀e ∈ H, v ∈ V.

We will also need the following second set of assumptions:

Assumptions 2.2. The following conditions will be used in the paper.

(A1) α : R→P(R) is maximal monotone, i.e. if D(α) := {r ∈ R : α(r) 6= ∅} then

(s1 − s2)(r1 − r2) ≥ 0 ∀r1, r2 ∈ D(α), s1 ∈ α(r1), s2 ∈ α(r2),

and

(σ − s)(ρ− r) ≥ 0, s ∈ α(r), r ∈ D(α) =⇒ s ∈ α(r).

We also assume that α is “bounded”, i.e. there is a constant M > 0 such that

|s| ≤M ∀r ∈ D(α), ∀s ∈ α(r). (2.8)

(A2) ψ : R2 −→ R is the Lipschitz continuous function given in (H2) of Assumption 2.1
satisfying (2.5) and the following monotonicity condition:[

ψ(τ1, χ)− ψ(τ2, χ)
]
(τ1 − τ2) ≥ 0 ∀τ1, τ2, χ ∈ R, (2.9)[

ψ(τ, χ1)− ψ(τ, χ2)
]
(χ1 − χ2) ≤ 0 ∀χ1, χ2, τ ∈ R, (2.10)

i.e. ψ(·, χ) is increasing for every χ ∈ R and ψ(τ, ·) is decreasing for every τ ∈ R.

(A3) We assume the following “compatibility” condition between α and ψ:

ψ(τ, χ) = 0 ⇐⇒ χ ∈ α(τ) ∀(τ, χ) ∈ R2. (2.11)

(A4) We are given

f ∈ L1(0, T ;H) + L2(0, T ;V ′) u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;V ′). (2.12)

(A5) We are given

θ0 ∈ L2(Ω), χ0 ∈ L∞(Ω), (2.13)

such that

χ0(x) ∈ α
(
θ0(x) + u(0, x)

)
for a.e. x ∈ Ω. (2.14)

Remark 2.2. Let us observe that (2.14) is equivalent to condition (3.3) in [22].

Let us recall that under condition (H1) of Assumption 2.1 and conditions (A1), (A4), (A5)
of Assumption 2.2, it is well-know that the Stefan problem admits a unique solution, i.e. there
exists a unique pair (θ, χ) : Q −→ R2 such that

θ ∈ L2(0, T ;V ) ∩H1(0, T ;H), (2.15)

χ ∈ L∞(Q), (2.16)

θ + χ ∈ H1(0, T ;V ′) (2.17)

(θ + χ)′(t) +Aθ(t) = f(t) in V ′, for a.e. t ∈ ]0, T [, (2.18)

χ(t, x) ∈ α
(
θ(t, x) + u(t, x)

)
for a.e. (t, x) ∈ Q. (2.19)

(θ + χ)(0) = θ0 + χ0 in V ′. (2.20)

For a proof we refer, for instance, to [5, 8, 21].
Now we state the weak formulation of the model of phase relaxation (1.11)–(1.15).
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Problem (Pε). Assume that ε > 0 and that Assumption 2.1 is satisfied. Find a pair of functions
(θε, χε) : Q −→ R2 satisfying the following conditions:

θε ∈ L2(0, T ;V ) ∩H1(0, T ;V ′), (2.21)

χε ∈ H1(0, T ;H), (2.22)

θ′ε(t) + χ′ε(t) + Aθε(t) = fε(t) in V ′, for a.e. t ∈ ]0, T [, (2.23)

εχ′ε(t, x) = ψ
(
θε(t, x) + uε(t, x), χε(t, x)

)
for a.e. (t, x) ∈ Q, (2.24)

θε(0) = θ0ε, a.e. in Ω, (2.25)

χε(0) = χ0ε, a.e. in Ω. (2.26)

Let us now introduce a general notation which will hold throughout the paper.

Definition 2.1. For a real Banach space B, and for a function v ∈ L1(0, T ;B) we define
v̂ : [0, T ] −→ B by setting

v̂(t) :=

∫ t

0
v(s) ds, t ∈ [0, T ]. (2.27)

We also state the following Baiocchi-Duvaut-Frémond formulation of the classical Stefan prob-
lem (cf. [3, 9, 10]).

Problem (P). Find a pair of functions (θ, χ) : Q −→ R2 satisfying the following conditions:

θ̂ ∈ L∞(0, T ;V ) ∩H1(0, T ;H), (2.28)

χ ∈ L∞(Q), (2.29)

θ(t) + χ(t) +Aθ̂(t) = f̂(t) + θ0 + χ0 in V ′, for a.e. t ∈ ]0, T [, (2.30)

χ(t, x) ∈ α
(
θ(t, x) + u(t, x)

)
for a.e. (t, x) ∈ Q. (2.31)

A pair (θ, χ) satisfying (2.28)–(2.31) is also called a solution of the Stefan problem in the sense
of Baiocchi-Duvaut-Frémond.

Now we state the main results of this paper.

Theorem 2.1. Assume that ε > 0 and that Assumption 2.1 holds. Then Problem (Pε) admits
a unique solution. Moreover it is well-posed in the sense specified by Proposition 3.1 below.

Theorem 2.2. If Assumptions 2.1 and 2.2 are satisfied, then there exists a unique solution (θ, χ)

of Problem (P), and (θ̂, θ, χ) is the weak-star limit in L∞(0, T ;V )× L2(0, T ;H)× L∞(0, T ;H)

of the sequence ((θ̂ε, θε, χε))ε as ε↘ 0, where (θε, χε) is the solution of (Pε) and it is assumed
that χ0ε ∈ L∞(Ω) for every ε > 0 and

fε → f in L1(0, T ;H) + L2(0, T ;V ′), (2.32)

uε → u in L2(Q), (2.33)

θ0ε → θ0 in H, (2.34)

χ0ε → χ0 in L∞(Ω) (2.35)

as ε↘ 0. Moreover (θ, χ) is also the unique solution of the Stefan problem (2.15)–(2.20).

Remark 2.3. Let us remark that in Theorem 2.2 we have that the whole sequence (θε, χε)
converges to (θ, χ).
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Remark 2.4. Since the usual weak formulation of the Stefan problem is stronger than the
Baiocchi-Duvaut-Frémond one, from the uniqueness property stated in Theorem 2.2 we deduce
that the solution (θ, χ) of (P) belongs to [L2(0, T ;V ) ∩ L∞(0, T ;H)] × L∞(Q) and satisfies
(2.15)–(2.20).

3. The problem with phase relaxation

Let us start by proving a continuous dependence result for Problem (Pε).

Proposition 3.1. Under Assumption 2.1 there exists a constant Cε, depending on T and on ε,
such that if

fεi ∈ L2(0, T ;H), θ0εi ∈ H, χ0εi ∈ H, i = 1, 2, (3.1)

and if the pair (θεi, χεi) satisfies (2.21)–(2.26) with θε, χε, fε, θ0ε, and χ0ε replaced respectively
by θεi, χεi, fεi, θ0εi, and χ0εi, i = 1, 2, then

‖θε1(t)− θε2(t)‖2H + ‖χε1(t)− χε2(t)‖2H ≤ Cε
(
‖θ0ε1 − θ0ε2‖2H + ‖χ0ε1 − χ0ε2‖2H

)
+ Cε

(
‖fε1 − fε2‖2L1(0,T ;H)+L2(0,T ;V ′) + ‖uε1 − uε2‖2L2(0,T ;H)

)
(3.2)

for every t ∈ [0, T ]. Let us remark that Cε does not depend on fεi, θ0εi, χ0εi, (θεi, χεi), i = 1, 2.
In particular Problem (Pε) has at most one solution.

Proof. Let us set θ̃ε := θε1−θε2, χ̃ε := χε1−χε2, f̃ε := fε1−fε2, ũε := uε1−uε2, θ̃0ε := θ0ε1−θ0ε2,
and χ̃0ε := χ0ε1 − χ0ε2. Let us also recall that fεk = fεkH + fεkV with fεkH ∈ L1(0, T ;H) and

fεkV ∈ L2(0, T ;V ′) for k = 1, 2, and set f̃εH := fε1H − fε2H , f̃εV := fε1V − fε2V .
Moreover for simplicity let us omit the subscript ε throughout the reminder of this proof. Let

us fix t ∈ [0, T ] and let us start by testing the difference of the energy balance equations for θ1

and θ2 by θ̃ and integrate over [0, t], i.e. we consider the difference of the equations (2.23) with

θ and χ replaced respectively by θi and χi, i = 1, 2, we apply it to θ̃ and we integrate over [0, t]
with t ∈ [0, T ]. Using (2.25) we infer that

1

2
‖θ̃(t)‖2H +

∫ t

0

∫
Ω
χ̃′(s, x)θ̃(s, x) dx ds+

∫ t

0

∫
Ω
|∇θ̃(s, x)|2 dx ds

=
1

2
‖θ̃0‖2H +

∫ t

0

∫
Ω
f̃H(s, x)θ̃(s, x) dx ds+

∫ t

0
V ′〈f̃V (s), θ̃(s)〉V ds, (3.3)

therefore using the elemantary Young inequality

1

2
‖θ̃(t)‖2H +

∫ t

0

∫
Ω
χ̃′(s, x)θ̃(s, x) dx ds+

1

2

∫ t

0

∫
Ω
|∇θ̃(s, x)|2 dx ds

≤ 1

2
‖θ̃0‖2H +

1

2

∫ t

0
‖f̃V (s)‖2V ′ dx ds+

∫ t

0
‖f̃(s)‖H‖θ̃(s)‖H ds+

1

2

∫ t

0
‖θ̃(s)‖2H ds. (3.4)

Exploiting equation (2.24) for the phase relaxation and the Lipschitz continuity (2.5) of ψ, we
find C1 > 0 depending on ε, but independent of θi, χi, ui, θ0i, χ0i, fi, such that (omitting for
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simplicity the integration variables s and x in some lines)∫ t

0

∫
Ω
χ̃′(s, x)θ̃(s, x) dx ds

=
1

ε

∫ t

0

∫
Ω

[
ψ
(
θ1 + u1, χ1

)
− ψ

(
θ2 + u2, χ2

)]
θ̃ dx ds

≥ −
∫ t

0

∫
Ω

L

ε

(
|θ̃ + ũ|+ |χ̃|

)
|θ̃| dx ds

≥ −
∫ t

0

∫
Ω

L

ε

(
|θ̃|2 + |ũ||θ̃|+ |χ̃||θ̃|

)
dx ds

≥ −C1

∫ t

0

∫
Ω

(|θ̃|2 + |ũ|2 + |χ̃|2) dx ds. (3.5)

Now let us multiply the equation (2.24) for the phase relaxation by χ̃, and integrate it over Q.
Thanks to (2.26) and to the Lipschitz continuity (2.5) of ψ, we deduce that

1

2
‖χ̃(t)‖2H =

1

2
‖χ̃0‖2H

+
1

ε

∫ t

0

∫
Ω

[
ψ(θ1(s, x) + u1(s, x), χ1(s, x))− ψ(θ2(s, x) + u2(s, x), χ2(s, x))

]
χ̃(s, x) ds dx

≤ 1

2
‖χ̃0‖2H +

L

ε

∫ t

0

∫
Ω

(
|θ̃ + ũ|+ |χ̃|

)
|χ̃| dx ds

≤ 1

2
‖χ̃0‖2H +

L

ε

∫ t

0

∫
Ω

(
|θ̃||χ̃|+ |ũ||χ̃|+ |χ̃|2

)
dx ds. (3.6)

Summing (3.4) and (3.6), taking into account of (3.5), and using the elementary Young inequal-
ity, we obtain that there exists a constant C2 depending on ε, but independent of θi, χi, ui, θ0i,
χ0i, fi, such that

‖θ̃(t)‖2H +

∫ t

0

∫
Ω
|∇θ̃(s, x)|2 dx ds+ ‖χ̃(t)‖2H

≤ C2

(
‖θ̃0‖2H + ‖χ̃0‖2H +

∫ t

0
‖f̃(s)‖2H ds+

∫ t

0
‖ũ(s)‖2H ds

)
+ C2

(∫ t

0
‖θ̃(s)‖2H ds+

∫ t

0
‖χ̃(s)‖2H ds

)
.

Thus an application of a generalized version of the Gronwall Lemma (cf. [2, Theorem 2.1]),
yields (3.2). �

Now we can conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. For simplicity let us omit the subscript ε. Fix X ∈ H1(0, T ;H). Then,
thanks to a standard result for parabolic equations, there exists a unique θX ∈ L2(0, T ;V ) ∩
H1(0, T ;V ′) such that

θ′X + AθX = f −X ′ in V ′, for a.e. t ∈ ]0, T [, (3.7)

θX(0) = θ0, a.e. in Ω. (3.8)

Now define χ : Q −→ R by

χ(t, x) := χ0(x) +
1

ε

∫ t

0
ψ(θX(s, x) + u(s, x), X(s, x)) ds, t ∈ [0, T ] , x ∈ Ω. (3.9)
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Using (3.9), the Lipschitz continuity of ψ, and the fact that θX , X and u belong to L2(0, T ;H), it
is immediately seen that χ ∈ H1(0, T ;H). Hence we can define the operator S : H1(0, T ;H) −→
H1(0, T ;H) associating with X the unique χ satisfying (3.7)–(3.9). We have that χ is a fixed
point of S if and only if (θχ, χ) is a solution to Problem (Pε). We are going to apply the shrinking
fixed point theorem. For i = 1, 2, fix Xi ∈ H1(0, T ;H) and let θi ∈ L2(0, T ;V ) ∩H1(0, T ;V ′)
be the unique function such that (3.7)–(3.8) hold with θX and X replaced by θi and Xi. Set

χi := S(Xi) and define X̃ := X1−X2, θ̃ := θ1− θ2, χ̃ := χ1−χ2. Let t ∈ [0, T ] be fixed. Let us

integrate in time the difference of equations (3.7) for i = 1, 2 and test it by θ̃. Integrating the
result over ]0, t[ and applying the Young inequality, we infer that

1

2

∫ t

0

∫
Ω
|θ̃(s, x)|2 dx ds+

1

2

∫
Ω

∣∣∣∣∫ t

0
∇θ̃(s, x) ds

∣∣∣∣2 dx ≤ 1

2

∫ t

0

∫
Ω
|X̃(s, x)|2 dx ds, (3.10)

Therefore, using (3.9) and the Lipschitz continuity (2.5) of ψ, we get∫ t

0

∫
Ω
|χ̃′(s, x)|2 dx ds

=
1

ε2

∫ t

0

∫
Ω

∣∣ψ(θ1(s, x) + u(s, x), X1(s, x)
)
− ψ

(
θ2(s, x) + u(s, x), X2(s, x)

)∣∣2 dx ds

≤ L2

ε2

∫ t

0

∫
Ω

(
|θ̃(s, x)|2 + |X̃(s, x)|2

)
dx ds ≤ 2L2

ε2

∫ t

0

∫
Ω
|X̃(s, x)|2 dx ds. (3.11)

On the other hand∫ t

0

∫
Ω
|X̃(s, x)|2 dx ds ≤

∫ t

0

∫
Ω
s

∫ s

0
|X̃ ′(r, x)|2 dr dx ds ≤

∫ t

0

∫
Ω
t

∫ s

0
|X̃ ′(r, x)|2 dr dx ds

hence ∫ t

0

∫
Ω
|χ̃′(s, x)|2 dx ds ≤ 2tL2

ε2

∫ t

0

∫ t

0

∫
Ω
|X̃(r, x)|2 dx dr ds. (3.12)

so that there exists a constant C independent of X1 and X2 such that

‖χ̃‖2H1(0,t;H) ≤ C
∫ t

0
‖X̃‖2H1(0,s;H) ds. (3.13)

This entails that for n sufficiently large, the iterated mapping Sn is a strict contraction and
consequently S admits a unique fixed point, which leads to the solution we are looking for. �

4. Asymptotic behavior

Throughout this section we will assume the non restrictive condition that ε < 1.
Let us start by stating the following easy consequence of the assumptions on the function ψ,

as already observed in [22, formula (1.12)].

Lemma 4.1. Under the Assumptions 2.1 and 2.2 we have that

ψ(τ, χ) > 0 ⇐⇒ χ < inf α(τ), (4.1)

ψ(τ, χ) < 0 ⇐⇒ χ > supα(τ), (4.2)

for every (τ, χ) ∈ R2.

Now we prove that if the initial datum χ0 is constrained by α−1 (cf. (2.14)), then the solution
χε of (2.24) is uniformly bounded on Q.
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Lemma 4.2. Under the Assumptions 2.1 and 2.2, if χ0ε ∈ L∞(Ω), and we are given χε ∈
H1(0, T ;H) and ηε > 0 such that

χ0(x) ∈ α
(
θ0(x) + uε(0, x)

)
for a.e. x ∈ Ω, (4.3)

|χ0ε(x)| ≤ |χ0(x)|+ ηε for a.e. x ∈ Ω, (4.4)

and

εχ′ε(t, x) = ψ
(
θ(t, x) + u(t, x), χε(t, x)

)
for a.e. (t, x) ∈ Q, (4.5)

then

|χε(t, x)| ≤M + ηε for a.e. (t, x) ∈ Q, (4.6)

where we recall that M is defined in condition (A1) of Assumption 2.2, so that M ≥ sup{α(τ) :
τ ∈ D(α)}.

Proof. Since χε ∈ H1(0, T ; L2(Ω)) we have that

χε(t) = χ0ε +

∫ t

0
χ′ε(s) ds ∀t ∈ [0, T ] ,

therefore there exists a measurable set A ⊆ Ω such that |Ω rA| = 0 and

χε(t, x) = χ0ε(x) +

∫ t

0
χ′ε(s, x) ds ∀t ∈ [0, T ] , ∀x ∈ A.

It follows that for every x ∈ A the function χε(·, x) is absolutely continuous from [0, T ] into R. It
is not restrictive to assume that χ0(x) ∈ α(θ0(x) +u(0, x)) for every x ∈ A, so that |χ0(x)| ≤M
for every x ∈ A. Therefore |χ0ε(x)| ≤ M + ηε for every x ∈ A. Let is fix x ∈ A and prove that
|χ(t, x)| ≤M + ηε for every t ∈ [0, T ]. Indeed, if this were not true, there would exist t0 ∈ ]0, T [
such that |χ(t0, x)| > M + ε. Let us first assume that χ(t0, x) > M + ηε. Then, by continuity,
there exists a0 ∈ [0, t0[ such that χ(a0, x) = M + ηε, and χ(t, x) > M + ηε for every t ∈ ]a0, t0].
In particular χ(t, x) > sup{α(r) : r ∈ D(α)}, hence χ(t, x) > sup{α

(
θ(t, x) + u(t, x), χ(t, x)

)
}

for every t ∈ ]a0, t0], so that ϕ
(
θ(t, x) + u(t, x), χ(t, x)

)
< 0 for every t ∈ ]a0, t0] by (4.5). It

follows that χ′(t, x) < 0 for a.e. t ∈ ]a0, t0], therefore, as χ(·, x) is absolutely continuous, we
infer that χ(·, x) is decreasing on ]a0, t0], a contradiction. An analogous argument can be used
in the case χ(t0, x) < 1. �

We need the following auxiliary lemma, where we make use of the notation (2.27) introduced

in Definition 2.1: v̂(t) =
∫ t

0 v(s) ds, for t ∈ [0, T ], v ∈ L1(0, T ;B), and a Banach space B.

Lemma 4.3. Under the Assumptions 2.1 and 2.2, if F ∈ L1(0, T ;H) + L2(0, T ;V ′), e0 ∈ H,
v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), and δ > 0, then, recalling notation (2.27), we have that∫ t

0
V ′〈F̂ (s), v(s)〉V ds ≤ δ

(
1 + t+

t2

2

)
‖v‖2L2(0,t;H) +

1 + t

4δ
‖F‖2L1(0,T ;H)+L2(0,T ;V ′) (4.7)

and ∫ t

0
V ′〈e0, v(s)〉V ds ≤ δ‖v‖2L2(0,t;H) +

t

4δ
‖e0‖2H . (4.8)

for every t ∈ [0, T ].
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Proof. Let F1 ∈ L1(0, T ;H) and F2 ∈ L2(0, T ;V ′) be such that F = F1 + F2. We have that∫ t

0
V ′〈F̂1(s), v(s)〉V ds ≤

∫ t

0
‖F̂1(s)‖H‖v(t)‖H ds

≤ δ‖v‖2L2(0,t;H) +
1

4δ3
‖F̂1‖2L2(0,t;H)

= δ‖v‖2L2(0,t;H) +
1

4δ

∫ t

0

∥∥∥∥∫ s

0
F1(r) dr

∥∥∥∥2

H

ds

≤ δ‖v‖2L2(0,t;H) +
1

4δ

∫ t

0

(∫ s

0
‖F1(r)‖H dr

)2

ds

≤ δ1‖v‖2L2(0,t;H) +
1

4δ
t‖F1‖2L1(0,T ;H). (4.9)

Let us observe that for any Banach space B we have

‖v̂(t)‖2B =

∥∥∥∥∫ t

0
v(s) ds

∥∥∥∥2

B

≤
(∫ t

0
‖v(s)‖B ds

)2

≤ t‖u‖2L2(0,t;B), (4.10)

therefore, integrating by parts and applying Young inequality, we find that∫ t

0
V ′〈F̂2(s), v(s)〉V ds

= V ′〈F̂2(t), v̂(t)〉V −
∫ t

0
V ′〈F2(s), v̂(s)〉V ds

≤ ‖F̂2(t)‖V ′‖v̂(t)‖V +

∫ t

0
‖F2(s)‖V ′‖v̂(s)‖V ds

= ‖F̂2(t)‖V ′
(
‖v̂(t)‖2H + ‖∇v̂(t)‖2Hn

)1/2
+

∫ t

0
‖F2(s)‖V ′

(
‖v̂(s)‖2H + ‖∇v̂(s)‖2Hn

)1/2
ds

≤ δ
(
t‖v‖2L2(0,t;H) + ‖∇v̂(t)‖2Hn

)
+

1

4δ
‖F̂2(t)‖2V ′

+ δ

∫ t

0

(
s‖v‖2L2(0,s;H) + ‖∇v̂(s)‖2Hn

)
ds+

1

4δ
‖F2‖2L2(0,T ;V ′)

≤ δ
(
t‖v‖2L2(0,t;H) + ‖∇v̂(t)‖2Hn

)
+

t

4δ
‖F‖2L2(0,t;V ′)

+ δ(t2/2)‖v‖2L2(0,t;H) + δ

∫ t

0
‖∇v̂(s)‖2Hn ds+

1

4δ
‖F2‖2L2(0,T ;V ′), (4.11)

thus (4.7) follows from (4.9) and (4.11). Finally estimate (4.8) is a consequence of (4.10) and of
formula ∫ t

0
V ′〈e0, v(s)〉V ds = V ′〈e0, v̂(t)〉V ≤ ‖e0‖H‖v̂(t)‖H .

�

We can now deduce the estimate for the temperature θ.

Lemma 4.4. Under the assumptions of Theorem 2.2, there exists a constant C1 independent of
ε, but depending on T , Ω, α, ψ, f , θ0, χ0, such that if (θε, χε) is the only solution of Problem
(Pε), then, recalling notation (2.27),

‖θε‖L2(0,T ;H) + ‖θ̂ε‖L∞(0,T ;V ) + ε1/2‖θε‖L2(0,T ;V ) ≤ C1. (4.12)
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Proof. We will tacitly use the convergences (2.32)–(2.35). Let us fix t ∈ [0, T ]. First we integrate
the energy balance equation (2.23) with respect to time over [0, s] with s ∈ [0, t], and test it by
θε(s). After a further integration over [0, t], and recalling (2.27), we get

‖θε‖2L2(0,t;H) +

∫ t

0

∫
Ω
χε(s, x)θε(s, x) dx ds+

1

2

∫
Ω
|∇θ̂ε(t, x)|2 dx

=

∫ t

0
V ′〈θε0 + χε0 + f̂ε(s), θε(s)〉V ds, (4.13)

therefore using Lemma 4.3 we infer that there exists a constant K1 depending on ‖θ0‖H , ‖χ0‖H ,
‖f‖L1(0,T ;H)+L2(0,T ;V ′), and T , but independent of ε, such that

1

2
‖θε‖2L2(0,t;H) +

∫ t

0

∫
Ω
χε(s, x)θε(s, x) dx ds+

1

4

∫
Ω
|∇θ̂ε(t, x)|2 dx

≤ K1 +K1

∫ t

0

∫
Ω
|∇θ̂ε(t, x)|2 dx ds. (4.14)

Now let us recall that fε = fε1 + fε2 with fε1 ∈ L1(0, T ;H) and fε2 ∈ L2(0, T ;V ′). We test by
εθε the energy balance equation (2.23) and integrate over [0, t]. Thanks to (2.25), we infer that

ε

2
‖θε(t)‖2H + ε

∫ t

0

∫
Ω
χ′ε(s, x)θε(s, x) dx ds+ ε

∫ t

0

∫
Ω
|∇θε(s, x)|2 dx ds

=
ε

2
‖θ0ε‖2H + ε

∫ t

0
(fε1(s), θε(s))H ds+ ε

∫ t

0
V ′〈fε2(s), θε(s)〉V ds (4.15)

therefore, recalling that ε < 1, several applications of Young and Hölder inequlities yield

ε

4
‖θε(t)‖2H + ε

∫ t

0

∫
Ω
χ′ε(s, x)θε(s, x) dx ds+

ε

2

∫ t

0

∫
Ω
|∇θε(s, x)|2 dx ds

≤ K2 +K2

∫ t

0
‖fε1(s)‖Hε1/2‖θε(s)‖H ds+K2

∫ t

0
ε‖θε(s)‖2 ds (4.16)

for some K2 > 0 depending on ‖θ0‖H , ‖f‖L1(0,T ;H)+L2(0,T ;V ′), but independent of ε. Thanks
to the equation (2.24) for the phase relaxation and to the monotonicity (2.9) of ψ in the first
variable, we can write (omitting in some lines the integration variable (s, x)):

ε

∫ t

0

∫
Ω
χ′(s, x)θε(s, x) dx ds

=

∫ t

0

∫
Ω
ψ(θε + u, χε)θε dx ds

=

∫ t

0

∫
Ω
ψ(θε + u, χε)(θε + u) dx ds−

∫ t

0

∫
Ω
ψ(θε + u, χε)udx ds

=

∫ t

0

∫
Ω

[
ψ(θε + u, χε)− ψ(0, χε)

]
(θε + u) dx ds

+

∫ t

0

∫
Ω
ψ(0, χε)(θε + u) dx ds−

∫ t

0

∫
Ω
ψ(θε + u, χε)udx ds

≥
∫ t

0

∫
Ω
ψ(0, χε)(θε + u) dx ds−

∫ t

0

∫
Ω
ψ(θε + u, χε)udx ds. (4.17)
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On the other hand, recalling the Lipschitz continuity (2.5) of ψ, we get that (we still omit the
integration variable (s, x)):∫ t

0

∫
Ω
ψ(0, χε)(θε + u) dx ds−

∫ t

0

∫
Ω
ψ(θε + u, χε)udx ds

=

∫ t

0

∫
Ω

[
ψ(0, χε)− ψ(θε + u, χε)

]
udx ds+

∫ t

0

∫
Ω
ψ(0, χε)θε dx ds

=

∫ t

0

∫
Ω

[
ψ(0, χε)− ψ(θε + u, χε)

]
udx ds

+

∫ t

0

∫
Ω

[
ψ(0, χε)− ψ(0, 0)

]
θε dx ds+

∫ t

0

∫
Ω
ψ(0, 0)θε dx ds

≥ −
∫ t

0

∫
Ω
L|θε + u||u| dx ds−

∫ t

0

∫
Ω
L|χε||θε| dx ds−

∫ t

0

∫
Ω
|ψ(0, 0)||θε|dx ds. (4.18)

Let us observe that thanks to (2.35) and to Lemma 4.2, we have that there exists M1 > 0
(depending on M) such that

‖χε‖∞ ≤M1 (4.19)

for every ε < 1. Therefore, collecting together (4.17)–(4.18), and using the elementary Young
inequality, we infer that there exists a constant K3 > 0 depending only on T , |Ω|, L, |ψ(0, 0)|,
‖u‖L2(0,T ;H), and M , such that

ε

∫ t

0

∫
Ω
χ′(s, x)θε(s, x) dx ds ≥ − K3 −

1

8
‖θε‖2L2(0,t;H).

Using again the boundedness of ‖χε‖∞ and the elementary Young inequality we also have that∫ t

0

∫
Ω
χ(t, x)θ(t, x) dx dt ≤ −2M1t|Ω| −

1

8
‖θε‖2L2(0,t;H). (4.20)

Therefore adding (4.20) and (4.20), and taking into account of (4.16) and (4.17), we find a
constant K with the same dependencies of K1,K2,K3, but independent of ε, such that

1

4
‖θε‖2L2(0,t;H) +

1

4

∫
Ω
|∇θ̂ε(t, x)|2 dx+

ε

4
‖θε(t)‖2H + ε

∫ t

0

∫
Ω
|∇θε(s, x)|2 dx ds

≤ K +K

(∫ t

0

∫
Ω
|∇θ̂ε(t, x)|2 dx ds+

∫ t

0
‖fε1(s)‖Hε1/2‖θε(s)‖H ds+

∫ t

0
ε‖θε(s)‖2 ds

)
,

which, together with a generalized version of the Gronwall Lemma (cf. [2, Theorem 2.1]), allows
us to conclude. �

Now we establish the estimate for the phase χ.

Lemma 4.5. Under the assumptions of Theorem 2.2, there exists a constant C2 independent of
ε, but depending on T , Ω, α, ψ, f , θ0, χ0, such that if (θε, χε) is the only solution of Problem
(Pε), then

‖χε‖L∞(Q) + ε‖χ′ε‖L2(Q) ≤ C2. (4.21)

Proof. We already know that the sequence χε is bounded in L∞(Q) by virtue of Lemma 4.2.
From the equation (2.24) for the phase relaxation and from the Lipschitz continuity (2.5) of ψ,
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we get that

ε

∫ t

0

∫
Ω
|χ′ε(s, x)|2 dx ds =

∫ t

0

∫
Ω
|ψ(θε(s, x), χε(s, x))|2 dx ds

≤ 2

∫ t

0

∫
Ω
|ψ(θε(s, x), χε(s, x))− ψ(0, 0)|2 dx ds+ 2

∫ t

0

∫
Ω
|ψ(0, 0)|2 dx ds

≤ L
∫ t

0

∫
Ω

(|θε(s, x)|2 + |χε(s, x)|2) dx ds+ 2T |Ω||ψ(0, 0)|2

≤ L‖θ‖2L2(0,t;H) + Lt|Ω|M2
1 + 2TΩ|ψ(0, 0)|2,

where M1 is the constant found in (4.19) thanks to (2.35) and to Lemma 4.2. We conclude by
invoking Lemma 4.4. �

We are now ready to prove the main results of this paper.

Proof of Theorem 2.2. From Lemma 4.4 and Lemma 4.5 we deduce that there exist two functions

θ ∈ L2(Q), χ ∈ L∞(Q) (4.22)

such that, at least for a subsequence which we do not relabel,

θε ⇀ θ in L2(Q), (4.23)

θ̂ε
∗
⇀ θ̂ in L∞(0, T ;V ) ∩H1(0, T ;H), (4.24)

χε
∗
⇀ χ in L∞(Q). (4.25)

An integration in time of the energy balance equation (2.23) yields

θε + χε + Aθ̂ε = θ0ε + χ0ε + f̂ε, in L2(0, T ;V ′) (4.26)

therefore taking the limit as ε→ 0 along the subsequence established above we get

θ + χ+ Aθ̂ = θ0 + χ0 + f̂ in L2(0, T ;V ′) (4.27)

which turns out to be equivalent to (2.30). From the Lipschitz continuity (2.5) of ψ we have
that ∫

Q
|εχ′ε(t, x)− ψ(θ(t, x) + u(t, x), χ(t, x))||v(t, x)|dx dt

=

∫
Q
|ψ(θε(t, x) + uε(t, x), χε(t, x))− ψ(θ(t, x) + u(t, x), χ(t, x))||v(t, x)| dx dt

≤ L
∫
Q

(|θε(t, x)− θ(t, x)|+ |uε(t, x)− u(t, x)|+ |χ(t, x)− χε(t, x)|)|v(t, x)| dx dt (4.28)

for every v ∈ L2(Q), therefore if ξ ∈ L2(Q) is defined by

ξ(t, x) := ψ(θ(t, x), χ(t, x)), (t, x) ∈ Q, (4.29)

we have that
εχ′ε ⇀ ξ in L2(Q). (4.30)

On the other hand from (4.25) we have that χ′ε → χ′ in Q in the sense of distributions, therefore
εχ′ε → 0 in Q in the sense of distributions. But by Lemma 4.5 the sequence εχ′ admits a
weakly-star convergent subsequence, therefore, at least for a further subequence, we also have

εχ′ε
∗
⇀ 0 in L2(Q). (4.31)

Thus from (4.29), (4.30) and (4.31) we infer that

ψ(θ(t, x) + u(t, x), χ(t, x)) = 0 for a.e. (t, x) ∈ Q, (4.32)
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so that by (2.11) we get that

χ(t, x) ∈ α(θ(t, x)) for a.e. (t, x) ∈ Q (4.33)

and also (2.31) is proved. It remains to prove uniqueness, which also allows us to deduce that
the whole sequences (θε) and (χε) converge. Let (θi, χi), i = 1, 2, be two solutions, and set

Θ := θ1 − θ2, X := χ1 − χ2. (4.34)

Taking the difference of the equations (2.30) written for (θ1, χ1) and (θ2, χ2), we find

Θ̂ ∈ L2(0, T ;V ) ∩H1(0, T ;H), (4.35)

X ∈ L∞(0, T ;H), (4.36)

Θ + X +AΘ̂ = 0 in V ′, in ]0, T [ . (4.37)

By a comparison in the last equation, we see that AΘ̂ ∈ L2(0, T ;H), therefore multiplying (4.37)
by Θ and integrating over Ω× (0, t), we get

‖Θ‖2L2(0,t;H) +

∫ t

0

∫
Ω
XΘ +

1

2

∫
Ω
|∇Θ̂(t, x)| dx = 0. (4.38)

Therefore, since XΘ ≥ 0 a.e. in Q by the maximal monotonicity of α and (2.31), from (4.38)
we infer that Θ = 0 a.e. in Q and, by a comparison in (4.37), that X = 0 a.e. in Q. �
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