We study nonnegative solutions to the fractional porous medium equation on a suitable class of connected, noncompact Riemannian manifolds. We provide existence and smoothing estimates for solutions, in an appropriate weak (dual) sense, for data belonging either to the usual L-1 space or to a considerably larger weighted space determined in terms of the fractional Green function. The class of manifolds for which the results hold includes both the Euclidean and the hyperbolic spaces and even in the Euclidean situation involves a class of data which is larger than the previously known one.

The fractional porous medium equation on noncompact Riemannian manifolds / Berchio, E; Bonforte, M; Grillo, G; Muratori, M. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 389:(2024), pp. 3603-3651. [10.1007/s00208-023-02731-6]

The fractional porous medium equation on noncompact Riemannian manifolds

Berchio, E;
2024

Abstract

We study nonnegative solutions to the fractional porous medium equation on a suitable class of connected, noncompact Riemannian manifolds. We provide existence and smoothing estimates for solutions, in an appropriate weak (dual) sense, for data belonging either to the usual L-1 space or to a considerably larger weighted space determined in terms of the fractional Green function. The class of manifolds for which the results hold includes both the Euclidean and the hyperbolic spaces and even in the Euclidean situation involves a class of data which is larger than the previously known one.
File in questo prodotto:
File Dimensione Formato  
2023.09.21_FPME_manifold.pdf

Open Access dal 07/10/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 570.7 kB
Formato Adobe PDF
570.7 kB Adobe PDF Visualizza/Apri
s00208-023-02731-6.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 702.86 kB
Formato Adobe PDF
702.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984889