We propose a novel approach to perform QoT estimation relying on joint exploitation of machine learning and analytical formula that offers accurate estimation when applied to scenarios with heterogeneous span profiles and sparsely occupied links. Our approach significantly outperforms the widely used lightpath-level QoT estimation.
A Novel Approach for Joint Analytical and ML-assisted GSNR Estimation in Flexible Optical Network / Arpanaei, F.; Shariati, B.; Safari, P.; Ranjbar Zefreh, M.; Hernandez, J. A.; Carena, A.; Fischer, J.; Larrabeiti, D.. - ELETTRONICO. - (2022). (Intervento presentato al convegno 2022 European Conference on Optical Communication, ECOC 2022 tenutosi a Basel, Switzerland nel 18-22 September 2022).
A Novel Approach for Joint Analytical and ML-assisted GSNR Estimation in Flexible Optical Network
Arpanaei F.;Carena A.;
2022
Abstract
We propose a novel approach to perform QoT estimation relying on joint exploitation of machine learning and analytical formula that offers accurate estimation when applied to scenarios with heterogeneous span profiles and sparsely occupied links. Our approach significantly outperforms the widely used lightpath-level QoT estimation.File | Dimensione | Formato | |
---|---|---|---|
264_ecoc2022.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
810.71 kB
Formato
Adobe PDF
|
810.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ECOC2022_ML_QoT_threeLevel_v9.0.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
249.24 kB
Formato
Adobe PDF
|
249.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984829