In this work, we evaluate machine learning (offline) and evolutionary strategy (online) techniques for the Raman pump power optimization. Experimental results show that, although reusable and accurate, online tools may be time-consuming for reconfigurable amplifiers.

Online versus Offline Optimization Methods for Raman Amplifier Optimization / de Moura, U. C.; Pinto, T.; Brusin, A. M. Rosa; Carena, A.; Napoli, A.; Zibar, D.; Da Ros, F.. - ELETTRONICO. - (2022), pp. -4. (Intervento presentato al convegno 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC) tenutosi a Toyama, Japan nel 3-6 July 2022) [10.23919/OECC/PSC53152.2022.9850067].

Online versus Offline Optimization Methods for Raman Amplifier Optimization

Carena, A.;
2022

Abstract

In this work, we evaluate machine learning (offline) and evolutionary strategy (online) techniques for the Raman pump power optimization. Experimental results show that, although reusable and accurate, online tools may be time-consuming for reconfigurable amplifiers.
2022
978-4-88552-336-6
File in questo prodotto:
File Dimensione Formato  
Online_versus_Offline_Optimization_Methods_for_Raman_Amplifier_Optimization.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 850.91 kB
Formato Adobe PDF
850.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2022036295_final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 631.32 kB
Formato Adobe PDF
631.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984825