In this work, we evaluate machine learning (offline) and evolutionary strategy (online) techniques for the Raman pump power optimization. Experimental results show that, although reusable and accurate, online tools may be time-consuming for reconfigurable amplifiers.
Online versus Offline Optimization Methods for Raman Amplifier Optimization / de Moura, U. C.; Pinto, T.; Brusin, A. M. Rosa; Carena, A.; Napoli, A.; Zibar, D.; Da Ros, F.. - ELETTRONICO. - (2022), pp. -4. (Intervento presentato al convegno 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC) tenutosi a Toyama, Japan nel 3-6 July 2022) [10.23919/OECC/PSC53152.2022.9850067].
Online versus Offline Optimization Methods for Raman Amplifier Optimization
Carena, A.;
2022
Abstract
In this work, we evaluate machine learning (offline) and evolutionary strategy (online) techniques for the Raman pump power optimization. Experimental results show that, although reusable and accurate, online tools may be time-consuming for reconfigurable amplifiers.File | Dimensione | Formato | |
---|---|---|---|
Online_versus_Offline_Optimization_Methods_for_Raman_Amplifier_Optimization.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
850.91 kB
Formato
Adobe PDF
|
850.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2022036295_final.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
631.32 kB
Formato
Adobe PDF
|
631.32 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984825