Cardiovascularandneurologicaldiseasesincludingtheirinteractionsaregettingtheattentionofresearchersandphysicians.Bothdiseasesoftensharecommonbiomarkers,riskfactors,andbiological pathways.Bynow,researchershaveconfirmedthatproblemsrelatedtocardiovascularleadtoneurologicalbadoutcomesandviceversa. Inaddition,researchershavestartedtousemachine/deeplearning algorithmsforbetterdiagnosis.Bynow,fewexamplesarepublishedonlittledatasetsconsistingofcomputedtomographyimages,electrocardiograms,electroencephalograms,andsoon,butmostofthework isnotdonebyartificialintelligence(AI).Inthiswork,wereviewedanumberofstudiesthathaveeither usedAIormanualcomputationwithconventionaltechniquesondifferentimagingmodalities.Fromall studies,itisfoundthatimagingmodalitiescansupportphysiciansinbetterdiagnosisofneurological outcomesfollowingcardiaceventsand/ordiseasesandviceversa.Moreover,AIdriventechnologies, like machinelearninganddeeplearning,couldbeusefultodelineateaccuratemodelsofdiseasesrelatedto neuro-cardiacpathologiesforpredictionsofconsequentbadoutcomesrelatedtothedifferentstages
Medical imaging and artificial intelligence to investigate neuro-cardiac pathologies and discover hidden relationships – a state of the art review / Shah, Syed Taimoor Hussain; Calati, Veronika; Bizzarri, Alessandra; Deriu, Marco Agostino. - ELETTRONICO. - (2022). (Intervento presentato al convegno Neurodevelopmental Impairments in Preterm Children - Computational Advancements (DETERMINED 2022)) [10.5281/zenodo.8009881].
Medical imaging and artificial intelligence to investigate neuro-cardiac pathologies and discover hidden relationships – a state of the art review
Shah, Syed Taimoor Hussain;Bizzarri, Alessandra;Deriu, Marco Agostino
2022
Abstract
Cardiovascularandneurologicaldiseasesincludingtheirinteractionsaregettingtheattentionofresearchersandphysicians.Bothdiseasesoftensharecommonbiomarkers,riskfactors,andbiological pathways.Bynow,researchershaveconfirmedthatproblemsrelatedtocardiovascularleadtoneurologicalbadoutcomesandviceversa. Inaddition,researchershavestartedtousemachine/deeplearning algorithmsforbetterdiagnosis.Bynow,fewexamplesarepublishedonlittledatasetsconsistingofcomputedtomographyimages,electrocardiograms,electroencephalograms,andsoon,butmostofthework isnotdonebyartificialintelligence(AI).Inthiswork,wereviewedanumberofstudiesthathaveeither usedAIormanualcomputationwithconventionaltechniquesondifferentimagingmodalities.Fromall studies,itisfoundthatimagingmodalitiescansupportphysiciansinbetterdiagnosisofneurological outcomesfollowingcardiaceventsand/ordiseasesandviceversa.Moreover,AIdriventechnologies, like machinelearninganddeeplearning,couldbeusefultodelineateaccuratemodelsofdiseasesrelatedto neuro-cardiacpathologiesforpredictionsofconsequentbadoutcomesrelatedtothedifferentstagesFile | Dimensione | Formato | |
---|---|---|---|
Medical imaging neuro-cardiac.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
971.32 kB
Formato
Adobe PDF
|
971.32 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984360