Pre-chamber (PC) ignition systems, enabling Turbulent Jet Ignition (TJI) combustion, represent a promising technology to extend the lean limit of Spark Ignition Internal Combustion Engines. Indeed, the higher ignition energy provided by the turbulent jets contributes to the limitation of combustion duration and variability even in diluted conditions. However, a detailed analysis of the combustion process is needed to maximize the performance of the system. More specifically, the interaction between the chemical and the turbulent scales are key factors in assessing the probabilities of main chamber (MC) ignition, determining the ignition pattern, and characterizing the combustion process. For this reason, the development of reliable numerical models is a crucial factor to pave the way toward a deeper understanding of details concerning TJI combustion. In the present work, a 3D-CFD numerical model was validated against experimental data at 4000 rpm, in stoichiometric and lean (i.e., λ = 1.2) conditions in a single-cylinder gasoline engine equipped with a passive pre-chamber. In both operations, the evolution of the turbulent combustion regimes over the whole combustion process was investigated, highlighting analogies and differences between the selected operative conditions. Additionally, a methodology to characterize the MC ignition and combustion process, able to describe the different phases of the interaction between PC and MC, and assess the thermal, turbulent, and chemical effects of the turbulent jets is presented.

CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine / Piano, A.; Scalambro, A.; Millo, F.; Catapano, F.; Sementa, P.; Di Iorio, S.; Bianco, A.. - In: TRANSPORTATION ENGINEERING. - ISSN 2666-691X. - ELETTRONICO. - 13:(2023). [10.1016/j.treng.2023.100200]

CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine

Piano A.;Scalambro A.;Millo F.;
2023

Abstract

Pre-chamber (PC) ignition systems, enabling Turbulent Jet Ignition (TJI) combustion, represent a promising technology to extend the lean limit of Spark Ignition Internal Combustion Engines. Indeed, the higher ignition energy provided by the turbulent jets contributes to the limitation of combustion duration and variability even in diluted conditions. However, a detailed analysis of the combustion process is needed to maximize the performance of the system. More specifically, the interaction between the chemical and the turbulent scales are key factors in assessing the probabilities of main chamber (MC) ignition, determining the ignition pattern, and characterizing the combustion process. For this reason, the development of reliable numerical models is a crucial factor to pave the way toward a deeper understanding of details concerning TJI combustion. In the present work, a 3D-CFD numerical model was validated against experimental data at 4000 rpm, in stoichiometric and lean (i.e., λ = 1.2) conditions in a single-cylinder gasoline engine equipped with a passive pre-chamber. In both operations, the evolution of the turbulent combustion regimes over the whole combustion process was investigated, highlighting analogies and differences between the selected operative conditions. Additionally, a methodology to characterize the MC ignition and combustion process, able to describe the different phases of the interaction between PC and MC, and assess the thermal, turbulent, and chemical effects of the turbulent jets is presented.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666691X23000404-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.19 MB
Formato Adobe PDF
8.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984336