Let (Fn)n≥1 be the sequence of Fibonacci numbers. For all integers a and b ≥ 1 with gcd(a, b) = 1, let [a−1 mod b] be the multiplicative inverse of a modulo b, which we pick in the usual set of representatives {0, 1,...,b − 1}. Put also [a−1 mod b] := ∞ when gcd(a, b) > 1. We determine all positive integers m and n such that [F −1 m mod Fn] is a Fibonacci number. This extends a previous result of Prempreesuk, Noppakaew, and Pongsriiam, who considered the special case m ∈ {3, n − 3, n − 2, n − 1} and n ≥ 7. Let (Ln)n≥1 be the sequence of Lucas numbers. We also determine all positive integers m and n such that [L−1 m mod Ln] is a Lucas number.

On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number / Sanna, Carlo. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 20:6(2023), pp. 1-11. [10.1007/s00009-023-02518-8]

On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number

Carlo Sanna
2023

Abstract

Let (Fn)n≥1 be the sequence of Fibonacci numbers. For all integers a and b ≥ 1 with gcd(a, b) = 1, let [a−1 mod b] be the multiplicative inverse of a modulo b, which we pick in the usual set of representatives {0, 1,...,b − 1}. Put also [a−1 mod b] := ∞ when gcd(a, b) > 1. We determine all positive integers m and n such that [F −1 m mod Fn] is a Fibonacci number. This extends a previous result of Prempreesuk, Noppakaew, and Pongsriiam, who considered the special case m ∈ {3, n − 3, n − 2, n − 1} and n ≥ 7. Let (Ln)n≥1 be the sequence of Lucas numbers. We also determine all positive integers m and n such that [L−1 m mod Ln] is a Lucas number.
File in questo prodotto:
File Dimensione Formato  
On the inverse of a Fibonacci number modulo a Fibonacci number being a Fibonacci number.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 378.43 kB
Formato Adobe PDF
378.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
GetFileAttachment.pdf

Open Access dal 15/11/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 289.96 kB
Formato Adobe PDF
289.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984226