In this paper, we study the problem of user scheduling for Low Earth Orbit (LEO) Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) Non-Terrestrial Network (NTN) systems with the objective of maximizing the sum-rate capacity while minimizing the total number of clusters. We propose an iterative graph-based maximum clique scheduling approach with constant graph density. Users are grouped together based on the channel coefficient of correlation (CoC) as dissimilarity metric and served by the satellite via Space Division Multiple Access (SDMA) by means of Minimum Mean Square Error (MMSE) digital beamforming on a cluster basis. Clusters are then served in different time slots via Time Division Multiple Access (TDMA). The results, presented in terms of per-cluster sum-rate capacity and per-user throughput, show that the presented approach can significantly improve the system performance.

Improved Graph-Based User Scheduling For Sum-Rate Maximization in LEO-NTN Systems / Ahmad, B.; Riviello, D. G.; Guidotti, A.; Vanelli-Coralli, A.. - ELETTRONICO. - (2023), pp. 1-5. (Intervento presentato al convegno 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 tenutosi a Rhodes Island, Greece nel 4-10 June 2023) [10.1109/ICASSPW59220.2023.10193499].

Improved Graph-Based User Scheduling For Sum-Rate Maximization in LEO-NTN Systems

Riviello D. G.;
2023

Abstract

In this paper, we study the problem of user scheduling for Low Earth Orbit (LEO) Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) Non-Terrestrial Network (NTN) systems with the objective of maximizing the sum-rate capacity while minimizing the total number of clusters. We propose an iterative graph-based maximum clique scheduling approach with constant graph density. Users are grouped together based on the channel coefficient of correlation (CoC) as dissimilarity metric and served by the satellite via Space Division Multiple Access (SDMA) by means of Minimum Mean Square Error (MMSE) digital beamforming on a cluster basis. Clusters are then served in different time slots via Time Division Multiple Access (TDMA). The results, presented in terms of per-cluster sum-rate capacity and per-user throughput, show that the presented approach can significantly improve the system performance.
2023
979-8-3503-0261-5
File in questo prodotto:
File Dimensione Formato  
Conf_ICASSP2023_Improved_Graph_Scheduling_AhmadBilal.pdf

accesso aperto

Descrizione: Camera ready
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 482.94 kB
Formato Adobe PDF
482.94 kB Adobe PDF Visualizza/Apri
Riviello-Improved.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 568.15 kB
Formato Adobe PDF
568.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984028