This paper conducts an extensive comparative study of state-of-the-art solutions for im- plementing the SHA-3 hash function. SHA-3, a pivotal component in modern cryptography, has spawned numerous implementations across diverse platforms and technologies. This research aims to provide valuable insights into selecting and optimizing Keccak SHA-3 implementations. Our study encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid) solutions. We assess the strengths, weaknesses, and performance metrics of each approach. Critical factors, including computational efficiency, scalability, and flexibility, are evaluated across differ- ent use cases. We investigate how each implementation performs in terms of speed and resource utilization. This research aims to improve the knowledge of cryptographic systems, aiding in the informed design and deployment of efficient cryptographic solutions. By providing a comprehensive overview of SHA-3 implementations, this study offers a clear understanding of the available options and equips professionals and researchers with the necessary insights to make informed decisions in their cryptographic endeavors.
Comparative Study of Keccak SHA-3 Implementations / Dolmeta, Alessandra; Martina, Maurizio; Masera, Guido. - In: CRYPTOGRAPHY. - ISSN 2410-387X. - ELETTRONICO. - 7:4(2023), pp. 1-16. [10.3390/cryptography7040060]
Comparative Study of Keccak SHA-3 Implementations
Dolmeta, Alessandra;Martina, Maurizio;Masera, Guido
2023
Abstract
This paper conducts an extensive comparative study of state-of-the-art solutions for im- plementing the SHA-3 hash function. SHA-3, a pivotal component in modern cryptography, has spawned numerous implementations across diverse platforms and technologies. This research aims to provide valuable insights into selecting and optimizing Keccak SHA-3 implementations. Our study encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid) solutions. We assess the strengths, weaknesses, and performance metrics of each approach. Critical factors, including computational efficiency, scalability, and flexibility, are evaluated across differ- ent use cases. We investigate how each implementation performs in terms of speed and resource utilization. This research aims to improve the knowledge of cryptographic systems, aiding in the informed design and deployment of efficient cryptographic solutions. By providing a comprehensive overview of SHA-3 implementations, this study offers a clear understanding of the available options and equips professionals and researchers with the necessary insights to make informed decisions in their cryptographic endeavors.File | Dimensione | Formato | |
---|---|---|---|
cryptography-07-00060.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
539.07 kB
Formato
Adobe PDF
|
539.07 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2983964