A discussion is here proposed regarding the Voigt function, that is the convolution of Gaussian and Lorentzian functions, and the Lévy and q-Gaussian Tsallis distributions. The Voigt and q-Gaussian functions can be used as line shapes in Raman spectroscopy for fitting spectra. Using the convolution theorem, we can obtain the relaxations which are producing the Voigt line shape. To determine the relaxation governing the q-Gaussian line shape, we need to use the Lévy symmetric distribution, since the direct Fourier transform of the q-Gaussian is a very complicated function. According to the work by Deng, 2010, the q-Gaussian functions are mimicking the Lévy functions in an excellent manner. Being the Fourier transform of the Lévy function a stretched exponential relaxation, we can argue that the same mechanism is producing the q-Gaussian line shape. Moreover, using the convolution theorem for the q-Gaussians, we can further generalize the relaxation mechanism.

Convolution and Fourier Transform: from Gaussian and Lorentzian Functions to q-Gaussian Tsallis Functions / Sparavigna, Amelia Carolina. - In: INTERNATIONAL JOURNAL OF SCIENCES. - ISSN 2305-3925. - 12:11(2023), pp. 7-11. [10.18483/ijSci.2732]

Convolution and Fourier Transform: from Gaussian and Lorentzian Functions to q-Gaussian Tsallis Functions

Sparavigna, Amelia Carolina
2023

Abstract

A discussion is here proposed regarding the Voigt function, that is the convolution of Gaussian and Lorentzian functions, and the Lévy and q-Gaussian Tsallis distributions. The Voigt and q-Gaussian functions can be used as line shapes in Raman spectroscopy for fitting spectra. Using the convolution theorem, we can obtain the relaxations which are producing the Voigt line shape. To determine the relaxation governing the q-Gaussian line shape, we need to use the Lévy symmetric distribution, since the direct Fourier transform of the q-Gaussian is a very complicated function. According to the work by Deng, 2010, the q-Gaussian functions are mimicking the Lévy functions in an excellent manner. Being the Fourier transform of the Lévy function a stretched exponential relaxation, we can argue that the same mechanism is producing the q-Gaussian line shape. Moreover, using the convolution theorem for the q-Gaussians, we can further generalize the relaxation mechanism.
File in questo prodotto:
File Dimensione Formato  
V122023112732-convolution.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983723