Since the Ronan Point collapse in the UK in 1968, the progressive collapse analysis of residential buildings has gradually drawn the attention of civil engineers and the scientific community. Recent advances in computer science and the development of new numerical methodologies allow us to perform high-fidelity collapse simulations. This paper assesses different scenarios that could have hypothetically caused the collapse of the Champlain Tower South Condo in Surfside, Florida, in 2021, one of the most catastrophic progressive collapse events that has ever occurred. The collapse analysis was performed using the latest developments in the Applied Element Method (AEM). A high-fidelity numerical model of the building was developed according to the actual structural drawings. Several different collapse hypotheses were examined, considering both column failures and degradation scenarios. The analyses showed that the failure of deep beams at the pool deck level, directly connected to the perimeter columns of the building, could have led to the columns’ failure and subsequent collapse of the eastern wing of the building. The simulated scenario highlights the different stages of the collapse sequence and appears to be consistent with what can be observed in the footage of the actual collapse. To improve the performance of the structure against progressive collapse, two modifications to the original design of the building were introduced. From the analyses, it was found that disconnecting the pool deck beam from the perimeter columns could have been effective in preventing the local collapse of the pool deck slab from propagating to the rest of the building. Moreover, these analyses indicate that enhancing the torsional strength and stiffness of the core could have prevented the collapse of the eastern part of the building, given the assumptions and initiation scenarios considered.

Progressive Collapse Analysis of the Champlain Towers South in Surfside, Florida / Pellecchia, Cosimo; Cardoni, Alessandro; Cimellaro, GIAN PAOLO; Domaneschi, Marco; Ansari, Farhad; Khalil, Ahmed Amir. - In: JOURNAL OF STRUCTURAL ENGINEERING. - ISSN 0733-9445. - 150:1(2024), pp. 1-13. [10.1061/JSENDH.STENG-12485]

Progressive Collapse Analysis of the Champlain Towers South in Surfside, Florida

Cosimo, Pellecchia;Alessandro, Cardoni;Gian Paolo, Cimellaro;Marco, Domaneschi;Farhad, Ansari;
2024

Abstract

Since the Ronan Point collapse in the UK in 1968, the progressive collapse analysis of residential buildings has gradually drawn the attention of civil engineers and the scientific community. Recent advances in computer science and the development of new numerical methodologies allow us to perform high-fidelity collapse simulations. This paper assesses different scenarios that could have hypothetically caused the collapse of the Champlain Tower South Condo in Surfside, Florida, in 2021, one of the most catastrophic progressive collapse events that has ever occurred. The collapse analysis was performed using the latest developments in the Applied Element Method (AEM). A high-fidelity numerical model of the building was developed according to the actual structural drawings. Several different collapse hypotheses were examined, considering both column failures and degradation scenarios. The analyses showed that the failure of deep beams at the pool deck level, directly connected to the perimeter columns of the building, could have led to the columns’ failure and subsequent collapse of the eastern wing of the building. The simulated scenario highlights the different stages of the collapse sequence and appears to be consistent with what can be observed in the footage of the actual collapse. To improve the performance of the structure against progressive collapse, two modifications to the original design of the building were introduced. From the analyses, it was found that disconnecting the pool deck beam from the perimeter columns could have been effective in preventing the local collapse of the pool deck slab from propagating to the rest of the building. Moreover, these analyses indicate that enhancing the torsional strength and stiffness of the core could have prevented the collapse of the eastern part of the building, given the assumptions and initiation scenarios considered.
File in questo prodotto:
File Dimensione Formato  
230725_PAPER_ChamplainTowers_R1-Plain Text.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 232.85 kB
Formato Adobe PDF
232.85 kB Adobe PDF Visualizza/Apri
pellecchia-et-al-2023-progressive-collapse-analysis-of-the-champlain-towers-south-in-surfside-florida.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983065