For the 2D and 3D Virtual Element Methods, a new approach to improve the conditioning of local and global matrices in the presence of badly-shaped polytopes is proposed. This new method defines the local projectors and the local degrees of freedom with respect to a set of scaled monomials recomputed on more well-shaped polytopes. This new approach is less computationally demanding than using the orthonormal polynomial basis. The effectiveness of our procedure is tested on different numerical examples characterized by challenging geometries of increasing complexity.
Improving high-order VEM stability on badly-shaped elements / Berrone, Stefano; Teora, Gioana; Vicini, Fabio. - In: MATHEMATICS AND COMPUTERS IN SIMULATION. - ISSN 0378-4754. - ELETTRONICO. - 216:(2024), pp. 367-385. [10.1016/j.matcom.2023.10.003]
Improving high-order VEM stability on badly-shaped elements
Stefano Berrone;Gioana Teora;Fabio Vicini
2024
Abstract
For the 2D and 3D Virtual Element Methods, a new approach to improve the conditioning of local and global matrices in the presence of badly-shaped polytopes is proposed. This new method defines the local projectors and the local degrees of freedom with respect to a set of scaled monomials recomputed on more well-shaped polytopes. This new approach is less computationally demanding than using the orthonormal polynomial basis. The effectiveness of our procedure is tested on different numerical examples characterized by challenging geometries of increasing complexity.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0378475423004287-main.pdf
accesso aperto
Descrizione: Post-print
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
2302.11284.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982969