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Abstract

For the 2D and 3D Virtual Element Methods, a new approach to improve the conditioning of local and global matrices
n the presence of badly-shaped polytopes is proposed. This new method defines the local projectors and the local degrees
f freedom with respect to a set of scaled monomials recomputed on more well-shaped polytopes. This new approach is
ess computationally demanding than using the orthonormal polynomial basis. The effectiveness of our procedure is tested on
ifferent numerical examples characterized by challenging geometries of increasing complexity.
2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Ill-conditioning; Virtual element method; Polygonal mesh; Polyhedral mesh; Polynomial basis

1. Introduction

In recent years, numerical methods for the approximation of Partial Differential Equations (PDEs) on polygonal
nd polyhedral meshes, such as Virtual Element Methods (VEM) [3,4] or Hybrid High Order (HHO) methods [8]
re gaining considerable interest since they offer a convenient framework to handle challenging geometries. In
articular, the Virtual Element Method, introduced in [3] for the Poisson problem and then extended in [5] to general
econd-order elliptic problems with variable coefficients, is a generalization of the Finite Element Method (FEM),
hich includes suitable non-polynomial functions as well as the usual polynomial functions in the local space, to

mploy generic polytopal meshes and to build high-order methods. The use of these features is made possible by the
ntroduction of suitable projection operators and by the careful selection of the local space and of local degrees of
reedom (DOFs), which eliminate the need to compute in a closed form these non-polynomial functions. It is known
rom the VEM literature (see for example [6]) that the resulting system matrix is ill-conditioned in the presence
f badly-shaped elements (collapsing bulks, small edges, etc.) when resorting to the scaled monomial basis in the
efinition of both the local projectors and the local DOFs.

In [6,7,10], it has been suggested to replace the scaled monomial basis with an orthonormal polynomial basis to
ure ill-conditioning and make the VEM solution more reliable and accurate, but this strategy can be very expensive
rom a computational point of view. In this paper, we propose an alternative strategy to the use of an orthonormal
olynomial basis in 2D and 3D, which is much less expensive and has already led to an improvement of global
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performances in the two-dimensional setting of HHO [9]. It consists of recomputing the scaled monomial basis on
suitable polytopes whose inertia tensor is the identity tensor (re-scaled by a proper constant) and, thus of defining the
local projectors and the local degrees of freedom as a function of such new polynomial basis to limit the condition
numbers of local matrices and to improve global performances.

The structure of this work is as follows. In Section 2, we define the desired properties of a well-shaped polytope
nd we build an affine isomorphism that allows for transforming a generic polytope into a new one that has the
equested features. In Section 3, we introduce the model problem and the VEM discretization on well-shaped
olytopes. Finally, in Section 4, we propose some numerical experiments that show the advantages of using
he new procedure with respect to the standard monomial basis or the orthonormal basis both in the two and
hree-dimensional cases.

Throughout this paper, we use the following notations. Given a polytope E , we denote by hE = maxx, y∈E ∥x− y∥,
xE and |E | its diameter, centroid and measure (i.e. length or area or volume), respectively.

Let us denote by Pd
k (E) the set of the d-dimensional polynomials defined on E of degree less than or equal to

k ≥ 0 and by nd
k = dimPd

k (E). For the ease of notation, we further set Pd
−1(E) = {0} and nd

−1 = 0 and we use the
two natural functions ℓ2 : N2

↔ N and ℓ3 : N3
↔ N such that:

(0, 0) ↔ 1, (1, 0) ↔ 2, (0, 1) ↔ 3, (2, 0) ↔ 4, . . .

(0, 0, 0) ↔ 1, (1, 0, 0) ↔ 2, (0, 1, 0) ↔ 3, (0, 0, 1) ↔ 4, (2, 0, 0) ↔ 5, . . .
(1)

On each polytope E , we define the set of scaled monomials of degree less than or equal to k, with k ≥ 0, as the
set

Md
k (E) =

{
mk,d

α =

(
x − xE

hE

)α

: α = ℓd (α) ∈ Nd , α = 1, . . . , nd
k

}
,

hich is a polynomial basis for Pd
k (E).

Finally, as usual, we use (·, ·)w and ∥·∥w to indicate the inner product and the norm in the Lebesgue space L2(w)
n some open subset ω ⊂ Rd , respectively.

. Well-shaped polytopes

Let Ω ⊂ Rd , with d = 2, 3, be an open bounded polytopal domain. We consider a sequence of decompositions
Th}h of Ω made up of polytopal elements E , where we fix, as usual, h = maxE∈Th hE . We further denote by N E

v ,
h,E and N E

e the number of vertices, the set of edges and the number of edges of E ∈ Th , respectively. In addition,
f d = 3, Fh,E indicates the set of the N E

f = #Fh,E faces of the polyhedron E ∈ Th and we set Fh = ∪E∈ThFh,E .
ow, we assume there exists a positive constant η ∈ (0, 1) independent of h such that the following mesh regularity

ssumptions hold true [1,5]:

• each element E ∈ Th is star-shaped with respect to a ball of radius ≥ ηhE ;
• if d = 3, each face f ∈ Fh is star-shaped with respect to a ball of radius ≥ ηh f ;
• for each element E ∈ Th ,

– if d = 2, for each edge e ∈ Eh,E , it holds |e| ≥ ηhE ;
– if d = 3, for each face f ∈ Fh,E , for each edge e ∈ Eh, f , it holds |e| ≥ ηh f ≥ η2hE .

he quality of an element E reflects the extent to which the element satisfies the previous assumptions [11,12].
hus, when η → 1, the element exhibits good quality. On the other hand, the element has poor quality when η is
mall.

efinition 1. An element is classified as badly-shaped when η → 0.

Let us denote by TE
∈ Rd×d the inertia tensor of E with respect to its centroid xE and the xi -axes with

= 1, . . . , d , whose entries are defined as

TE
ss =

∑
i=1,...,d

∫
E

(xi − (xE )i )2, ∀s = 1, . . . , d,
i ̸=s
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and

TE
i j = −

∫
E

(xi − (xE )i )(x j − (xE ) j ), ∀i, j = 1, . . . , d, i ̸= j.

irstly, we recall that the products of inertia, i.e. the extra-diagonal entries of TE , represent a measure of the
mbalance in the mass distribution. Secondly, as in [2], we classify the polytope E as isotropic if its anisotropic
atio r E is such that

r E
:=

µE
max

µE
min

≈ 1.

here µE
max, µE

min are the maximum and the minimum eigenvalue of TE , respectively.

Definition 2. We define a well-shaped polytope E as an isotropic element whose tensor of inertia TE is a diagonal
matrix.

We observe that, in the absence of hanging nodes, a well-shaped polytope for Definition 2 satisfies the mesh
assumptions. Therefore, this polytope is a high quality element according to Definitions 1 and 2. On the other hand,
in the presence of hanging nodes, Definition 2 allows, for instance, small edges that participate in forming hanging
nodes. Thus, a well-shaped polytope for Definition 2 could be classified as a badly-shaped element according to
Definition 1.

Finally, our goal is to define an affine isomorphism FE for each element E ∈ Th such that F−1
E maps E into a

ell-shaped polytope Ê according to Definition 2.

.1. The inertial mapping

Let us define the mass matrix related to E as

HE
=

∫
E

(x − xE )(x − xE )T
∈ Rd×d , (2)

hat is a symmetric positive-definite real matrix. We consider its spectral decomposition

HE
= QEΛE (

QE)T
,

here QE
∈ Rd×d is the orthonormal matrix whose columns represent the eigenvectors of the mass matrix HE and

E is the diagonal matrix whose diagonal entries are the eigenvalues λE
i , i = 1, . . . , d of HE . Now, we define a

ew element Ẽ through the affine map

x̃ ↦→ BE (x − xE ) , (3)

here BE
=

√
λE

max

√(
ΛE

)−1 (
QE

)T is invertible and such that
⏐⏐det BE

⏐⏐ =

(
λE

max

)d/2√∏d
i=1 λE

i

, λE
max = maxi=1,...,d λE

i . We

ote that the centroid of Ẽ is x̃ Ẽ = 0 and TẼ is a diagonal matrix. Indeed,

TẼ
i j = −

∫
Ẽ

x̃i x̃ j

= −
⏐⏐det BE

⏐⏐ BE (i, :)
∫

E
(x − xE )(x − xE )T (

BE ( j, :)
)T

= −
⏐⏐det BE

⏐⏐ BE (i, :)HE (
BE ( j, :)

)T

= −λE
max

⏐⏐det BE
⏐⏐ (

QE (:, i)
)T√

λE
i

QEΛE (
QE)T QE (:, j)√

λE
j

= −λE
max

⏐⏐det BE
⏐⏐ ⎛⎝(

QE (:, i)
)T√

λE
i

(
QE

√

ΛE
)⎞⎠ ⎛⎝(

QE
√

ΛE
)T QE (:, j)√

λE
j

⎞⎠
E

⏐⏐ E
⏐⏐ T
= −λmax det B ei e j = 0, ∀i, j = 1, . . . , d s.t. i ̸= j,
369
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Table 1
Examples of FE mapping if d = 2.

where, given a generic matrix A, A(i, :) is the sub-matrix of A made up of its i th row, A(:, j) is the sub-matrix
f A made up of its j th column and the set {ei }

d
i=1 represents the canonical basis of Rd . Finally, concerning the

iagonal entries of TẼ , we note that

TẼ
ss =

∑
i=1,...,d

i ̸=s

∫
Ẽ

x̃i x̃i =

∑
i=1,...,d

i ̸=s

⏐⏐det BE
⏐⏐ BE (i, :)HE (

BE (i, :)
)T

=

∑
i=1,...,d

i ̸=s

λE
max

⏐⏐det BE
⏐⏐ eT

i ei

= (d − 1)λE
max

⏐⏐det BE
⏐⏐ , ∀s = 1, . . . , d.

hus, the diagonal entries prove to be constant with respect to the matrix index s. In conclusion, the new element
Ẽ is isotropic and well-shaped according to Definition 2.

We note that the computational cost of the mapping (3) depends only on the geometric dimension d of the
roblem but not on the order of accuracy of the discretization method. Furthermore, for stability reasons, it is
referable to perform a re-scaling before proceeding with this mapping to avoid small eigenvalues. Moreover, we
lso decide to re-scale elements after applying the mapping (3) to have polytopes with unit diameter.

In conclusion, on each element E ∈ Th , we perform sequentially the transformations

E −→E −→ Ẽ −→ Ê

x ↦→ x =
1

hE
x ↦→ x̃ = BE (

x − xE

)
↦→ x̂ =

1
h Ẽ

x̃.
(4)

nd we define the local mapping FE such that

x = FE (x̂) = xE + FE x̂, (5)

here

FE
= hE h Ẽ

(
BE

)−1
and

⏐⏐det FE
⏐⏐ = hd

E hd
Ẽ

⏐⏐⏐⏐det
(

BE
)−1

⏐⏐⏐⏐ .
xamples of FE mapping are shown in Tables 1 and 2 for the two-dimensional and the three-dimensional case,

espectively.
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Table 2
Examples of FE mapping if d = 3.

3. VEM discretization

Given k ≥ 1, on each element Ê = F−1
E (E) with E ∈ Th , we introduce the local projection operators

ˆ ∇̂,Ê
k : H 1(Ê) → Pd

k

(
Ê

)
and Π̂ 0,Ê

k : L2(Ê) → Pd
k

(
Ê

)
, as⎧⎨⎩

(
∇̂ p̂, ∇̂

(
Π̂ ∇̂,Ê

k v̂ − v̂
))

Ê
= 0, ∀ p̂ ∈ Pd

k

(
Ê

)
P̂0

(
Π̂ ∇̂,Ê

k v̂ − v̂
)

= 0,
(6)

nd (
p̂,

(
Π̂ 0,Ê

k v̂ − v̂
))

Ê
= 0, ∀ p̂ ∈ Pd

k

(
Ê

)
, (7)

here

P̂0(v̂) =

{(
v̂, 1

)
∂ Ê if k = 1,(

v̂, 1
)

Ê if k > 1.
(8)

urthermore, for the sake of convenience, we use the symbol Π̂ 0,Ê
k−1 also for the L2-projection operator of

ector-valued functions onto the polynomial space
(
Pd

k−1

(
Ê

))2
, meaning a component-wise application.

If d = 3, we need to compute both the 3D projectors on E and the 2D projectors on each face f ∈ Fh,E , thus we
eed to define a polynomial basis for P3

k(E), ∀E ∈ Th , and a polynomial basis for P2
k( f ), ∀ f ∈ Fh , as highlighted

n [4]. For this reason, we build three different approaches ((B), (F) and (B-F)) by defining, ∀E ∈ Th ,

B) the 3D set of scaled monomials on the well-shaped polyhedron Ê = F−1
E (E) and the 2D sets of scaled

monomials on the original faces f ∈ Fh,E ;
(F) the 3D set of scaled monomials on the original polyhedron E and the 2D sets of scaled monomials on the

mapped faces f̌ obtained by applying a mapping F−1
f to each face f ∈ Fh,E defined according to what is

done for the two-dimensional case in Section 2.1;
B-F) the 3D set of scaled monomials on Ê = F−1

E (E) and the 2D sets of scaled monomials on the mapped faces
ˇ −1
f = F f ( f ) for each f ∈ Fh,E .
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We want to highlight that in the (B-F) approach the new polygons f̌ are obtained by applying F−1
f to the original

faces f of E and not to faces f̂ of Ê . In the following, for the sake of convenience, we define F f , ∀ f ∈ Fh , in
the (B) approach and FE , ∀E ∈ Th , in the (F) approach as the identity maps.

Now, on each E ∈ Th , following [1,5], we introduce the local enhanced Virtual Element spaces:

• if d = 2,

V 2
k (E) =

{
v ∈ H 1(E) : ∆v ∈ P2

k(E) , v|e ∈ P1
k(e) ∀e ∈ Eh,E , v|∂ E ∈ C0(∂ E),(

v̂, p̂
)

Ê =

(
Π̂ ∇̂,Ê

k v̂, p̂
)

Ê
∀ p̂ ∈ P2

k

(
Ê

)
\ P2

k−2

(
Ê

)}
;

• if d = 3,

V 3
k (E) =

{
v ∈ H 1(E) : ∆v ∈ P3

k(E) , v| f ∈ V 2
k ( f ) ∀ f ∈ Fh,E , v|∂ E ∈ C0(∂ E),(

v̂, p̂
)

Ê =

(
Π̂ ∇̂,Ê

k v̂, p̂
)

Ê
∀ p̂ ∈ P3

k

(
Ê

)
\ P3

k−2

(
Ê

)}
,

here the set Pd
k

(
Ê

)
\Pd

k−2

(
Ê

)
denotes the set of polynomials of degree exactly k or k − 1, ŵ(x̂) = w(xE + FE x̂)

nd ∇w =
(
FE

)−T
∇̂ŵ, ∀w ∈ V d

k (E). We further define the following set of local DOFs: ∀vh ∈ V d
k (Ê)

1. the value of vh at the vertices of E ;
2. if k > 1, for each edge e ∈ Eh,E , the value of vh at the k − 1 internal Gauss–Lobatto quadrature nodes on e;
3. if k > 1 and d = 3, for each face f ∈ Fh,E , the scaled moments on f̌ = F−1

f ( f )

1

| f̌ |

(
v̌h, m̌k−2,d−1

α

)
f̌ , ∀m̌k−2,d−1

α ∈ Md−1
k−2

(
f̌
)

; (9)

4. if k > 1, the scaled moments on Ê = F−1
E (E)

1

|Ê |

(
v̂h, m̂k−2,d

α

)
Ê , ∀m̂k−2,d

α ∈ Md
k−2

(
Ê

)
. (10)

Let N dof
E = dim V d

k (E), for each element E ∈ Th , we denote by dofE
i the operator that associates its i th local

egree of freedom to each sufficiently smooth function ϕ and by {ϕi }
N

dof
E

i=1 the set of local Lagrangian VEM basis

unctions related to the defined DOFs. Furthermore, we introduce the local projection matrices Π̂∇̂,Ê
k ∈ Rnd

k ×N
dof
E ,

ˆ 0,Ê
k−1 ∈ Rnd

k−1×N
dof
E and Π̂

0,x̂j,Ê
k−1 ∈ Rnd

k−1×N
dof
E , for j = 1, . . . , d, which are defined as

Π̂ ∇̂,Ê
k ϕi =

nd
k∑

α=1

(
Π̂∇̂,Ê

k

)
αi

m̂k,d
α , Π̂ 0,Ê

k−1ϕi =

nd
k−1∑

α=1

(
Π̂0,Ê

k−1

)
αi

m̂k−1,d
α ,

Π̂ 0,Ê
k−1

∂ϕi

∂ x̂ j
=

nd
k−1∑

α=1

(
Π̂

0,x̂j,Ê
k−1

)
αi

m̂k−1,d
α , ∀ j = 1, . . . , d.

(11)

We note that the definition of local DOFs makes the computation of the local projection matrices (11) completely
independent of the geometric properties of the original element E in the two-dimensional case. On the other hand,
in the three-dimensional case, the geometric properties of the original element E influence the computation of the
projectors with an intensity that depends on the chosen approach ((B), (F) or (B-F)).

Finally, we introduce the global Virtual Element space

Vh,k =
{
v ∈ C0 (

Ω
)
∩ H 1

0 (Ω) : v ∈ V d
k (E) ∀E ∈ Th

}
.

nd, in agreement with the local choice of the DOFs, we define the following set of DOFs: ∀v ∈ Vh,k

1. the value of vh at the internal vertices of the decomposition Th ;
2. if k > 1, for each internal edge e ∈ Eh , the value of vh at the k − 1 internal Gauss–Lobatto quadrature nodes
on e;
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3. if k > 1 and d = 3, for each internal face f ∈ Fh , the scaled moments on f̌ = F−1
f ( f )

1

| f̌ |

(
v̌h, m̌k−2,d−1

α

)
f̌ , ∀m̌k−2,d−1

α ∈ Md−1
k−2

(
f̌
)

; (12)

4. if k > 1, for each element E ∈ Th , the scaled moments on Ê = F−1
E (E)

1

|Ê |

(
v̂h, m̂k−2,d

α

)
Ê , ∀m̂k−2,d

α ∈ Md
k−2

(
Ê

)
. (13)

emark 3.1. It is very important to set out monomials on the original faces and not on the faces of the mapped
lement F−1

E (E) to uniquely define the degrees of freedom (12) in the approach (B). For the same reason, in the
pproach (B-F), we apply the map F f to the original faces f and not to faces f̂ belonging to the mapped elements.

.1. Example: an advection–diffusion–reaction problem

Let D be a symmetric uniformly positive definite tensor over Ω , γ ≥ 0 be a sufficiently smooth function Ω → R
nd b be a smooth vector-valued function Ω → Rd s.t. ∇ · b = 0. Given f ∈ L2(Ω ), we consider the following
dvection–diffusion–reaction problem{

−∇ · (D∇u) + b · ∇u + γ u = f in Ω

u = 0 on ∂Ω .
(14)

ithout loss of generality, we assume homogeneous boundary Dirichlet conditions. The non-homogeneous case can
e treated with the standard lifting procedure.

Now, ∀E ∈ Th , we introduce the local bilinear form

aE (u, v) =

∫
E

D∇u · ∇v +

∫
E

b · ∇uv +

∫
E

γ uv

nd we write the variational formulation of (14) as: Find u ∈ V = H 1
0 (Ω ) such that∑

E∈Th

aE (u, v) =

∑
E∈Th

∫
E

f v, ∀v ∈ V . (15)

e note that∫
E

(D∇u) · ∇v =

∫
Ê

(
∇̂û

)T (
FE)−1 D̂

(
FE)−T

∇̂v̂
⏐⏐det FE

⏐⏐ , (16)∫
E

b · ∇uv =

∫
Ê

b̂T (
FE)−T

∇̂ûv̂
⏐⏐det FE

⏐⏐ ,∫
E

γ uv =

∫
Ê

γ̂ ûv̂
⏐⏐det FE

⏐⏐ , ∫
E

f v =

∫
Ê

f̂ v̂
⏐⏐det FE

⏐⏐ .
here, for all x̂ ∈ Ê ,

D̂(x̂) = D(xE + FE x̂), b̂(x̂) = b(xE + FE x̂),

γ̂ (x̂) = γ (xE + FE x̂), f̂ (x̂) = f (xE + FE x̂).

Let us introduce on each element E the symmetric uniformly positive-definite tensor K̂ =
⏐⏐det FE

⏐⏐ (FE
)−1 D̂

FE
)−T , the vector-valued function β̂ =

⏐⏐det FE
⏐⏐ (FE

)−1 b̂ and ρ̂ =
⏐⏐det FE

⏐⏐ γ̂ . We define the local virtual bilinear
orm as: ∀uh, vh ∈ Vh,k ,

aE
h (uh, vh) =

∫
Ê

(
K̂Π̂ 0,Ê

k−1∇̂ûh

)
· Π̂ 0,Ê

k−1∇̂v̂h

+ C D SE
(

(I − Π̂ ∇̂,Ê )ûh, (I − Π̂ ∇̂,Ê )v̂h

)

k k
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∫
Ê

β̂ · Π̂ 0,Ê
k−1∇̂ûh Π̂ 0

k−1v̂h

+

∫
Ê

ρ̂ Π̂ 0,Ê
k−1 ûh Π̂ 0,Ê

k−1 v̂h,

here C D is a constant depending on D and SE (·, ·) is the standard dofi–dofi stabilization, i.e.

SE (uh, vh) = hd−2
E

N
dof
E∑

i=1

dofE
i

(
ûh

)
dofE

i

(
v̂h

)
. (17)

e note that it is very important to use the diameter hE of the original element in Eq. (17) in order to scale SE (·, ·)

s aE (·, ·). See [3] for further details.
Finally, the VEM discrete counterpart of (15) reads: Find uh ∈ Vh,k such that∑

E∈Th

aE
h (uh, vh) =

∑
E∈Th

∫
Ê

f̂ Π̂ 0,Ê
k−1 v̂h

⏐⏐det FE
⏐⏐ , ∀vh ∈ Vh,k . (18)

. Numerical experiments

In this section, we propose some numerical experiments to validate the aforementioned approaches, which we
enerically call inertial (Inrt in short), in the two and three-dimensional cases. To show the advantages of using
ur procedures, we compare their performances in different discretizations of increasing complexity with respect to

• the standard monomial approach (Mon in short) described in [4];
• the orthonormal approach (Ortho, in short) which follows the construction presented in [7,10] for the two and

three-dimensional cases, respectively. We highlight that for the three-dimensional case, we choose to use an
orthonormal basis both in the bulks and on the faces of the decomposition.

n the following, for the ease of notation, we assume to work on mapped elements also in the monomial and in the
rthonormal approaches, where the used maps FE , ∀E ∈ Th , and F f , ∀ f ∈ Fh , are the identity maps.

The comparison is based on the analysis of the condition numbers of local projection matrices that are defined in
11) and that are used to assemble the local system matrix. For the 3D case, we also analyse the condition numbers

f the 2D local projection matrices Π̌∇̌,f̌
k ∈ Rnd

k ×N
dof
f , Π̌0,f̌

k−1 ∈ Rnd
k−1×N

dof
f that are employed for computing the

oundary integrals appearing in the computation of the 3D local projection matrices. For the sake of brevity, we
mit to report the behaviours of the condition number of the local projection matrices Π̂0,Ê

k−1 and Π̌0,f̌
k−1 since they

o not add further information with respect to the others. Furthermore, we analyse the behaviours of the condition
umber of the global system matrix A of the discrete problem (18) and of the following relative error norms:

u2
err =

∑
E∈Th

∫
Ê

(
û − Π̂ 0,Ê

k ûh

)2 ⏐⏐det FE
⏐⏐

∑
E∈Th

∥u∥
2
E

, (19)

∇u2
err =

∑
E∈Th

∫
Ê

(
∇̂û − Π̂ 0,Ê

k−1∇̂ûh

)T (
FE)−1 (

FE)−T
(
∇̂û − Π̂ 0,Ê

k−1∇̂ûh

) ⏐⏐det FE
⏐⏐

∑
E∈Th

∥∇u∥
2
E

, (20)

s the local polynomial degree k increases while keeping the mesh fixed.
We expect an overall improvement with respect to the monomial approach, but not necessarily with respect to the

rthonormal approach. We emphasize that this work aims to propose a computationally cheap strategy to mitigate
he ill-conditioning caused by using the standard scaled monomial basis defined on the original polytopal elements.
n this regard, we recall that the additional cost of the orthonormal approach relies on the cost of the application
f the Modified Gram Schmidt algorithm with reorthogonalization on each element (and on each face, if d = 3),

d (k+1)...(k+d) . On the other hand, the computational complexity of our method only depends
hich depends on nk = d!

374



S. Berrone, G. Teora and F. Vicini Mathematics and Computers in Simulation 216 (2024) 367–385

1

I

a

Fig. 1. Meshes used for tests 1 and 2. Highly-distorted hexagonal mesh (HDHM) on 1(a). Triangular mesh on a small domain (RTRM) on
(b). Polygonal mesh (GPGM) on 1(c). Collapsing polygons (CSM1) on 1(d).

Table 3
Properties of meshes used in tests 1, 2 and 5.

#Th N E
v Area Diameter Anisotropic ratio Edge ratio

avg min avg max min avg max min avg max min avg max

HDHM 5711 5.9
E 2.6e−6 1.8e−4 1.3e−3 2.1e−3 2.4e−2 6.2e−2 1.0e+0 5.9e+1 6.2e+2 1.0e+0 2.5e+0 2.0e+1
Ê 5.0e−1 6.4e−1 6.5e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.1e+0 2.0e+0

RTRM 153 3
E 3.0e−13 6.5e−13 1.0e−12 1.0e−6 1.4e−6 1.9e−6 1.0e+0 2.3e+0 9.9e+0 1.0e+0 1.3e+0 2.8e+0
Ê 4.3e−1 4.3e−1 4.3e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

GPGM 81 4.3
E 3.7e−6 1.2e−2 3.1e−2 3.7e−3 2.0e−1 3.5e−1 1.3e+0 2.7e+1 4.7e+2 1.2e+0 5.1e+2 4.0e+4
Ê 4.3e−1 4.5e−1 5.3e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.3e+2 9.0e+3

CSM1 110 4
E 1.0e−3 9.1e−3 1.0e−2 1.0e−1 1.4e−1 1.4e−1 1.0e+0 1.0e+1 1.0e+2 1.0e+0 1.8e+0 1.0e+1
Ê 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CSM2 110 4
E 1.0e−4 9.1e−3 1.0e−2 1.0e−1 1.4e−1 1.4e−1 1.0e+0 9.1e+2 1.0e+4 1.0e+0 1.0e+1 1.0e+2
Ê 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CSM3 110 4
E 1.0e−5 9.1e−3 1.0e−2 1.0e−1 1.4e−1 1.4e−1 1.0e+0 9.1e+4 1.0e+6 1.0e+0 9.2e+1 1.0e+3
Ê 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CM 1072 3.4
E 2.7e−4 9.3e−4 5.0e−3 6.5e−2 1.4e−1 3.4e−1 1.9e+1 1.5e+2 7.7e+2 1.5e+0 5.6e+0 2.2e+1
Ê 3.1e−1 4.4e−1 6.2e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.1e+0 3.0e+1

on the geometric dimension d of the problem and, if d = 3, on the number of faces for the (F) and (B-F) inertial
approaches, but not on the local polynomial degree k.

4.1. Test 1: Highly-distorted mesh, small domain and hanging nodes in 2D

Given ϵ ∈ R+ and Ω = (0, ϵ) × (0, ϵ), we consider the problem (14) with constant coefficients D = I, γ = 0

and b =

[
0
0

]
, where f and the non-homogeneous Dirichlet boundary condition are set in such a way the exact

solution is:

u(x1, x2) = 1.1 +
16
ϵ4 x1x2(ϵ − x1)(ϵ − x2). (21)

n this first test, we consider

• a highly-distorted hexagonal mesh (HDHM in short) on a square domain with edge length ϵ = 1 (Fig. 1(a));
• a regular triangular mesh (RTRM in short) on a small square domain with edge length ϵ = 1.0e−5 (Fig. 1(b));
• a generic polygonal mesh (GPGM in short) on a square domain with edge length ϵ = 1, which is characterized

by polygons with very different shapes and areas and by the presence of hanging nodes (Fig. 1(c)).

In Table 3, we show the main features of both the original and the mapped polygons related to each
forementioned mesh, namely the area, the diameter, the anisotropic ratio and the edge ratio, i.e. the ratio between
375
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Fig. 2. Test 1: Behaviours of the worst condition numbers of local projection matrices among elements with respect to k. Left: HDHM.
Centre: RTRM. Right: GPGM.

Fig. 3. Test 1: Behaviour of the condition number of the system matrix A with respect to k. Left: HDHM. Centre: RTRM. Right: GPGM.

he highest and the smallest lengths of edges of E . By looking at the geometric properties of Ê , we note that the
ap FE generates well-shaped polygons according to Definition 2. Furthermore, it tends to uniform the geometric

roperties of elements belonging to the same category (such as triangles, parallelograms, hexagons, etc.) in the
bsence of almost-hanging nodes, i.e. nodes between two consecutive edges forming an angle of about 180 degrees.
ndeed, in the presence of almost-hanging nodes, our map does not eliminate any problems related to small edges
hat participate to form almost-hanging nodes, as highlighted by looking at the edge ratio property of the mesh
PGM.
In Figs. 2, 3 and 4, we show the trends of the condition numbers of the local projection matrices, of the global

ystem matrix and of the errors (19)–(20) while varying the polynomial degree k, respectively. We omit the plots
f the condition numbers of Π̂

0,x̂2,Ê
k−1 with respect to k, since its trend is very similar to the one of the condition

umber of Π̂0,x̂1,Ê
k−1 for each method. In all the figures, we note that the inertial procedure outperforms the monomial

ne as expected.
In Fig. 2, we observe good local results of the inertial approach, although the best performances are obtained

y the orthonormal approach for high values of k. In this regard, we remark that our aim is to cheaply reduce the
ll-conditioning of local and global matrices in the presence of badly-shaped elements with respect to the monomial

pproach.
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Fig. 4. Test 1: Behaviours of errors (19) and (20) with respect to k. Left: HDHM. Centre: RTRM. Right: GPGM.

We stress that, in the case of mesh RTRM, the first re-scaling in (4) is required for the Inrt approach. Indeed,
he mass matrix related to the original RTRM elements is a singular matrix in finite precision due to its eigenvalues
hich are in the order of magnitude of the round-off error. We point out that the small triangles of RTRM represent
challenging geometry for the orthonormal approach. The inertial approach, instead, is robust in the presence of

he small polygons of mesh RTRM in terms of the condition number of the global matrix (see Fig. 3(b)).
In the presence of very badly-shaped polygons of mesh GPGM, the global performances of the Ortho and Inrt

ethods are comparable (see Fig. 3(c)).
Since the proposed solution (21) is a polynomial of degree 4, we expect that the errors shown in Fig. 4 tend to

ero when k < 4 and then vanish when k ≥ 4. However, after an initial decrease, in most cases the errors start
o raise due to the ill-conditioning. In this regard, we note that the monomial errors blow up in the case of mesh
PGM, while the growth of errors related to Inrt is much more controlled. Finally, we remark that the robustness
f our method in the cases of RTRM and GPGM meshes is reflected in the smallest errors for the higher values of
, as highlighted in Figs. 4(b), 4(c), 4(e) and 4(f).

.2. Test 2: Collapsing polygons

In this experiment, we test the performances of our procedures considering the complete diffusion–advection–
eaction problem (14) with variable coefficients and a non-polynomial solution in the case of collapsing polygons.
hus, given Ω = (0, 1) × (0, 1), we consider

D(x1, x2) =

[
1 + x2

2 −x1x2

−x1x2 1 + x2
1

]
, b(x1, x2) =

[
x1

−x2

]
, γ (x1, x2) = x1x2,

nd we set f in such a way the exact solution is

u(x1, x2) = sin(πx1) sin(πx2).

e generate a sequence of three rectangular meshes composed of squared elements of area 10−1 with the exception
f a central band made up of two groups of rectangles, one of which (the purple band highlighted in Fig. 1(d)) is
ormed by rectangles of height 10−2, 10−3 and 10−4 for CSM1, CSM2 and CSM3, respectively. We refer to Fig. 1(d)

or the plot of the first mesh CSM1.
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Fig. 5. Test 2: Behaviours of the worst condition numbers of local projection matrices among elements with respect to k. Solid lines: CSM1.
Dashed lines: CSM2. Dotted lines: CSM3.

Fig. 6. Test 2: Behaviours of the condition numbers of the global system matrix and of errors (19), (20) with respect to k. Solid lines:
SM1. Dashed lines: CSM2. Dotted lines: CSM3.

The geometric properties of the original and of the mapped elements of the three meshes are shown in Table 3
n the rows CSMi , i ∈ {1, 2, 3}. We note that the performed map makes the mapped elements belonging to the
entral band equal to the other mapped ones. This result is well highlighted by looking at the condition numbers of
ocal projection matrices in Fig. 5, which do not vary among the three meshes in the inertial approach. On the other
and, from the condition number of the global system matrix and from the error measurements shown in Fig. 6,
e can observe that the global performances remain dependent of the geometric properties of the original elements

lso in the inertial approach. As done for Test 1, we omit to report the behaviours of the condition numbers of
ˆ 0,x̂2,Ê

k−1 , since its trend is very similar to the one of the condition number of Π̂0,x̂1,Ê
k−1 for each method.

Finally, the condition and error measurements confirm that our technique shows very good improvements with
espect to the monomial case. For high polynomial degrees, the orthonormal approach outperforms the inertial one.
owever, we recall that our procedure leads to a huge reduction in the overall computational cost as it does not
epend on the local polynomial degree k.

.3. Test 3: Badly-shaped polyhedrons and aligned faces in 3D

In the following, we analyse the three-dimensional case. Let Ω = (0, 1)3, we consider the problem (14) with
onstant coefficients D = I, γ = 0 and b = 0, where we defined f and the non-homogeneous Dirichlet boundary
ondition in such a way the exact solution is the polynomial function of degree 6:

u(x1, x2, x3) = 1.7 + 64x1x2x3(1 − x1)(1 − x2)(1 − x3).

In this experiment, we generate:

• a regular tetrahedral mesh (RTTM in short) to validate our procedures in the 3D case (Fig. 7(a));
• a generic polyhedral mesh (GPDM in short) made up mostly of badly-shaped polyhedrons and characterized
by a copious number of aligned faces (Fig. 7(b)).
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Fig. 7. Meshes used for Tests 3 and 4 clipped on the cubic domain [0, 1]3. Left: Tetrahedral mesh (RTTM). Centre: Polyhedral mesh
(GPDM). Right: Collapsing polyhedrons (CCM1).

Table 4
Properties of faces of meshes used in the Test 3 and in the Test 4.

#Fh N f
v Area Diameter Anisotropic ratio Edge ratio

avg min avg max min avg max min avg max min avg max

RTTM 1330 3
f 7.8e−3 3.0e−2 6.8e−2 1.8e−1 3.3e−1 4.7e−1 1.0e+0 3.4e+0 1.2e+1 1.0e+0 1.6e+0 2.8e+0
f̌ 4.3e−1 4.3e−1 4.3e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

GPDM 2017 5.1
f 3.6e−7 1.2e−2 8.3e−2 1.9e−3 1.7e−1 7.9e−1 1.0e+0 3.5e+3 1.2e+6 1.0e+0 4.4e+1 4.4e+3
f̌ 4.3e−1 4.9e−1 6.1e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 2.6e+1 2.7e+3

CCM1 535 4
f 4.0e−3 3.6e−2 4.0e−2 2.0e−1 2.7e−1 2.8e−1 1.0e+0 1.2e+1 1.0e+2 1.0e+0 2.0e+0 1.0e+1
f̌ 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CCM2 535 4
f 4.0e−4 3.6e−2 4.0e−2 2.0e−1 2.7e−1 2.8e−1 1.0e+0 1.1e+3 1.0e+4 1.0e+0 1.2e+1 1.0e+2
f̌ 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CCM3 535 4
f 4.0e−5 3.6e−2 4.0e−2 2.0e−1 2.7e−1 2.8e−1 1.0e+0 1.1e+5 1.0e+6 1.0e+0 1.1e+2 1.0e+3
f̌ 5.0e−1 5.0e−1 5.0e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

Table 5
Properties of bulks of meshes used in Test 3 and in Test 4.

#Th N E
v N E

e N E
f Volume Diameter Anisotropic ratio Face ratio

avg avg avg min avg max min avg max min avg max min avg max

RTTM 569 4 6 4 E 3.3e−4 1.8e−3 5.0e−3 1.8e−1 3.5e−1 4.7e−1 1.5e+0 1.0e+1 1.9e+2 1.1e+0 1.8e+0 3.5e+0

Ê 1.2e−1 1.2e−1 1.2e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

GPDM 308 20.5 30.6 12.1 E 6.7e−7 3.2e−3 6.2e−3 4.6e−2 3.2e−1 7.9e−1 1.4e+0 9.2e+0 4.2e+2 1.4e+0 1.8e+3 8.9e+4

Ê 1.2e−1 1.8e−1 2.2e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.7e+3 7.5e+4

CCM1 150 8 12 6 E 8.0e−4 6.7e−3 8.0e−3 2.8e−1 3.3e−1 3.5e−1 1.0e+0 1.8e+1 1.0e+2 1.0e+0 2.5e+0 1.0e+1

Ê 1.9e−1 1.9e−1 1.9e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CCM2 150 8 12 6 E 8.0e−5 6.7e−3 8.0e−3 2.8e−1 3.4e−1 3.5e−1 1.0e+0 1.7e+3 1.0e+4 1.0e+0 1.8e+1 1.0e+2

Ê 1.9e−1 1.9e−1 1.9e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

CCM3 150 8 12 6 E 8.0e−6 6.7e−3 8.0e−3 2.8e−1 3.4e−1 3.5e−1 1.0e+0 1.7e+5 1.0e+6 1.0e+0 1.7e+2 1.0e+3

Ê 1.9e−1 1.9e−1 1.9e−1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0

The main geometric properties of the polyhedrons and of the polygonal faces belonging to these meshes are
hown in Tables 4 and 5. More precisely, for the polyhedron elements we consider the volume, the diameter, the
nisotropic ratio and the face ratio, i.e. the ratio between the highest and the smallest areas of the faces of the
olyhedron. Instead, for the polygonal faces we measure the area, the diameter, the anisotropic ratio and the edge
atio. As in the 2D case, the application of FE tends to uniform elements belonging to the same categories, as
appens in the case of tetrahedrons. Moreover, we note that the face ratio of the mapped elements related to GPDM
s not far from the face ratio of the original elements, since the map does not take into account the presence of
ligned faces. However, we do not care about the geometric properties related to the faces of the mapped elements

Ê , since we never use them (see Remark 3.1).
We measure the performances of the different VEM approaches up to polynomial degree k = 7, as the dimension
f the local and global matrices increase faster in the three-dimensional setting.
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Fig. 8. Test 3: Behaviours of the worst condition numbers of both the 2D and the 3D local projection matrices among elements with respect
o k. Top: RTTM. Bottom: GPDM.

Fig. 8 shows the behaviour of the condition numbers of the 2D and the 3D local projection matrices while
arying the polynomial degree k. We omit the graphs reporting the behaviours of the condition numbers of Π̂0,x̂2,Ê

k−1

nd Π̂
0,x̂3,Ê
k−1 with respect to k, since these trends are very similar to the one of the condition number of Π̂0,x̂1,Ê

k−1 for
ach method.

By looking at those figures, we can observe that by using the inertial approach (F), and thus by mapping only
he faces of the elements, we improve just the condition numbers of the 2D local projection matrices, whereas
he condition numbers of the 3D local projection matrices are comparable to the ones obtained with the standard

onomial approach. For the same reason, the condition numbers of 2D local projection matrices related to the
nertial approach (B) are in the same order of magnitude as the monomial ones. We observe that the condition
umbers of the 3D local projection matrices in the inertial approach (B) differ from the ones related to the inertial
pproach (B-F) even if we use the same mapping for their bulks, because of the different contributions of the
oundary integrals. Finally, we note that the condition numbers of 2D local projection matrices related to the Inrt
B-F) approach are equal to the ones obtained by resorting to the inertial approach (F), since the projectors are
omputed on the same faces in both cases.

Fig. 9 shows the trends of the condition number of the system matrix and of the errors (19) and (20) with respect
o k. As expected from the local behaviour, the performances of the inertial approach (F) overlap the monomial
ne in both tests. On the other hand, the other two inertial approaches (B) and (B-F) lead to very good results in
erms of the condition number of the global matrix. Moreover, we observe that the global performances of the (B-F)
trategy are comparable and sometimes better than those obtained with the orthonormal approach in the case of the
olyhedral mesh GPDM. Finally, we note that the errors related to both Inrt (B-F) and Ortho correctly decay to
ero when k = 6, since the exact solution is a polynomial function of degree 6, whereas the errors related to the
ther approaches start to raise for k ≥ 5.

In conclusion, the results show that mapping only the faces or only the bulks of elements of the mesh is not
ufficient to obtain more reliable and accurate solutions. On the other hand, using the inertial approach (B-F) is

ery efficient from a computational point of view and leads to very high-quality results.
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Fig. 9. Test 3: Behaviours of the condition number of the global system matrix and of errors (19) and (20) with respect to k. Top: RTTM.
Bottom: GPDM.

4.4. Test 4: Collapsing polyhedrons

This experiment represents a natural extension of Test 2 to the 3D case. Thus, we consider on Ω = (0, 1)3 the
dvection–diffusion–reaction problem (14) with variable coefficients given by

D(x1, x2, x3) =

⎡⎣1 + x2
2 + x2

3 −x1x2 −x1x3

−x1x2 1 + x2
1 + x2

3 −x2x3

−x1x3 −x2x3 1 + x2
1 + x2

2

⎤⎦ ,

b(x1, x2, x3) =

⎡⎣ x1
x2

−2x3

⎤⎦ , γ (x1, x2, x3) = x1x2x3.

nd we set f in such a way the exact solution is

u(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3).

We further generate a sequence of three hexahedral meshes with cubic elements of edge length 0.2 with the
xception of a central band made by two groups of hexahedrons, one of which (the purple band highlighted in
ig. 7(c)) is composed of hexahedrons whose volumes vary from 8 · 10−4 in the first mesh CCM1 to 8 · 10−6 in

he last mesh CCM3 of the sequence as a consequence of the shrinkage performed along the x1-direction. Fig. 7(c)
hows a clip of the first mesh, while Tables 4 and 5 summarize the 2D and 3D geometric properties of the meshes
CMi , i ∈ {1, 2, 3}.

Fig. 10 depicts the behaviour of the condition numbers of local projection matrices for the three meshes with
espect to the polynomial degree k. For this particular test, we decide to plot the behaviour of the local condition
umber of all three local projection matrices Π̂

0,x̂i,Ê
k−1 , with i = 1, 2, 3, to highlight the differences between the

onditioning of the local projection matrices of the derivatives along the x1-axis, i.e. the direction of the shrinkage,
nd the conditioning of Π̂0,x̂i,Ê

k−1 , with i = 2, 3.
As it happens for the 2D case, mapping only the faces with the (F) approach makes uniform the condition numbers

f the 2D local projection matrices among meshes in the sequence. On the other hand, mapping only the bulks in
he (B) approach does not make the condition numbers of the 3D local projection matrices independent of the
381
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Fig. 10. Test 4: Behaviours of the worst condition numbers of both the 2D and the 3D local projection matrices among elements with
respect to k. Solid lines: CCM1. Dashed lines: CCM2. Dotted lines: CCM3.

Fig. 11. Test 3: Behaviours of the condition number of the global system matrix and of errors (19) and (20) with respect to k. Solid lines:
CM1. Dashed lines: CCM2. Dotted lines: CCM3.

esh of the sequence since the boundary contributions depend on the actual mesh. Finally, mapping both faces and
ulks with the inertial (B-F) approach makes the condition numbers of all local projection matrices approximately
ndependent of the features of the central band.

To conclude the analysis, in Fig. 11 we show the global performances of all the aforementioned approaches in
erms of the condition number of the global system matrix and of the errors (19) and (20). As concluded for the
est 3, the global performances of all the inertial approaches depend on the geometric properties of the original
eshes of the sequence. Furthermore, the inertial approach (B-F) reveals to be more robust and more accurate than

he monomial approach and it has a behaviour comparable to the one of the orthonormal approach, besides being
he best advantageous choice from a computational point of view.

.5. Test 5: A concave case

Now, we propose a simple test on a concave mesh, which is obtained by randomly agglomerating neighbouring
lements of a starting triangular mesh that share a vertex. An example of the produced meshes is depicted in

ig. 12. In particular, in this test, the agglomeration process starts from a mesh obtained through the shrinkage
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Fig. 12. Test 5: A concave mesh generated by the agglomeration procedure.

Table 6
Test 5: Examples of FE mapping if E is a concave element.

Fig. 13. Test 5: Behaviours of the condition numbers of the global system matrix and of errors (19), (20) with respect to k.

from [0, 1] × [0, 10] to [0, 1] × [0, 1] of a regular triangular mesh to create a more challenging test environment.
The geometric properties of the resulting concave mesh CM are shown in Table 3, while an example of how our
map acts on these concave elements is shown in Table 6. We highlight that the high aspect ratio which characterizes
the original elements is mainly due to the initial shrinkage performed. Indeed, without such initial shrinkage, our
original concave elements have an aspect ratio that scales like O(1). Furthermore, we state that the proposed inertial
strategy is mainly designed for the case of convex polytopes since the treatment of concave polytopes paves the
way for a huge number of situations that we cannot analyse. Thus our considerations are limited to the concave
case that we analyse here.

Now, we consider the elliptic problem presented in Section 4.2 to compare the performances of the aforemen-
tioned approaches. Fig. 13 illustrates the behaviour of the condition number of the global system matrix A and
of errors (19) and (20) with respect to k and at the fixed mesh CM. Despite the presence of concave elements,
also in this case we can observe that our strategy helps to strongly reduce the condition number of A with respect
to the monomial approach by improving the reliability of the solution. Finally, we observe that, in this case, the
orthonormal approach performs better than our strategy in terms of accuracy, while still being more demanding
from a computational point of view.
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4.6. The computational times

In this section, we compare the most cumbersome numerical experiments that we perform in both the 2D and
D cases in terms of the computational time, namely the resolutions of the Poisson problem which exploit the
ighly-distorted hexagonal mesh HDHM (Fig. 1(a)) in Test 1 and the Polyhedral mesh GPDM (Fig. 7(b)) in Test
. We consider the time required by each approach to perform all the tasks required to assemble the local stiffness
atrix for all the elements of Th , i.e. the computation of the local projectors, the orthogonalization step in the Ortho

pproach, the mapping of the elements and the changing of variable in the integrals (see (16)) in the Inrt approach.
e measure only the time required for these operations since they represent the only differences in our code among

he aforementioned approaches.
Fig. 14 displays the behaviours of the ratio rtime between the time required by the Inrt and the Ortho approach

ith respect to the time related to the monomial strategy for different values of the polynomial degree k for both the
wo-dimensional HDHM mesh and the three-dimensional GPDM mesh. We further report on the top of the figure
he number of the DOFs N dof to understand the dimension of the problem. In the 3D case, for the sake of brevity,
e report only the Inrt (B-F) approach, since it is the most accurate and the most expensive from a computational
oint of view among the three-dimensional inertial strategies.

Firstly, we observe that rtime ≥ 1 for each approach and each polynomial degree k, since each approach requires
t least all the computations required also for the monomial approach. Furthermore, we note that we include the
ime needed to compute the mapped elements for the Inrt approach for each k even if these operations could be
erformed just once at all for all the polynomial degrees since they are independent of k. This property can help
o strongly reduce the overall cost, for example, related to a p-method.

In Fig. 14 we can observe that the computational times reflect our previous theoretical discussion: the additional
ost required by the Inrt approach for the mapping becomes negligible for the higher values of the polynomial
egrees (or of the number of DOFs) by leading to a value of the time ratio that is approximately equal to 1 for
he higher values of the polynomial degrees. On the other hand, the additional cost related to the Ortho approach
ecomes higher and higher with k.

. Conclusions

One of the main features of the Virtual Element Method is the possibility to use very complex geometries, but
he use of the classical scaled monomial basis in its construction generally leads to very low-quality results in the
resence of badly-shaped polytopes and for high polynomial degrees.

In this paper, we propose a new procedure to build a polynomial basis on polytopes to mitigate the ill-conditioning
f the local projection matrices and of the global system matrix with a computational complexity that depends only
n the geometric dimension of the problem (d = 2 or 3) and on the number of faces in 3D.

Throughout different numerical experiments of increasing complexity in 2D and 3D cases, we observe that
ecomputing the scaled monomial basis on more well-shaped polytopes leads to obtain an acceptable well-
onditioned polynomial basis and, consequently, a more reliable solution. We highlight the need of defining both
he 2D and 3D polynomial bases on well-shaped polytopes in the 3D case in order to improve the local and global
erformances with respect to the use of the standard scaled monomial basis.

Finally, the proposed approach has proved to have reasonable and, most of the time, comparable results from a
ractical point of view with respect to the use of a local orthonormal polynomial basis, while being less expensive
rom a computational point of view.
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Fig. 14. Test 5: Behaviours of ratio rtime between the time required by the Inrt and from the Ortho approach with respect to the time related
to the monomial strategy. Left: HDHM (2D). Right: GPDM (3D).
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