Nowadays, the generation of vast volumes of oily sludges is associated with industrial operations such as production, pretreatment, processing, water separation, and storage tank maintenance. Biopiles can be more efficient than other techniques for removing hydrocarbons in sludges, but their removal efficiency depends on operating variables. The goal of this study was to determine the best operating variable ranges at the bench scale to simultaneously optimize hydrocarbons removal in a biopile prototype. This research was conducted within the framework of a Cuban project and used an experimental protocol that integrates several standardized methods and engineering procedures into a series of steps. A Box-Behnken design was implemented for three factors and two response variables: the mass of Total Petroleum Hydrocarbons (TPH) removed and the final concentration of TPH. A simultaneous optimum was obtained for an initial TPH concentration of 39 278 mg·kg-1 and contents of texturizer and moisture of 6,45 and 25,95%, respectively. The obtained variable ranges ensure a compromise solution that maximizes the mass of TPH removed and keeps the contaminant concentration under the Cuban disposal regulations. The results have been used to set up the biopiles at a pilot scale as a subsequent project stage.

Bench-Scale Biopile Hydrocarbons Removal Optimization Using the Response Surface Methodology and Simultaneous Optimization / Gutiérrez-Benítez, Omar; CASTRO RODRIGUEZ, DAVID JAVIER; Manuel Serrano-Suárez, Víctor; Casals-Pérez, Enmanuel; Rabassa-Rabassa, Dayana; Rafael Núñez-Moreira, Roberto; Ortiz-Guilarte, Eudalys; Victoria Iglesias-Rodríguez, María. - In: INGENIERÍA E INVESTIGACIÓN. - ISSN 0120-5609. - ELETTRONICO. - 43:2(2023), pp. 1-11. [10.15446/ing.investig.97848]

Bench-Scale Biopile Hydrocarbons Removal Optimization Using the Response Surface Methodology and Simultaneous Optimization

David Javier Castro Rodriguez;
2023

Abstract

Nowadays, the generation of vast volumes of oily sludges is associated with industrial operations such as production, pretreatment, processing, water separation, and storage tank maintenance. Biopiles can be more efficient than other techniques for removing hydrocarbons in sludges, but their removal efficiency depends on operating variables. The goal of this study was to determine the best operating variable ranges at the bench scale to simultaneously optimize hydrocarbons removal in a biopile prototype. This research was conducted within the framework of a Cuban project and used an experimental protocol that integrates several standardized methods and engineering procedures into a series of steps. A Box-Behnken design was implemented for three factors and two response variables: the mass of Total Petroleum Hydrocarbons (TPH) removed and the final concentration of TPH. A simultaneous optimum was obtained for an initial TPH concentration of 39 278 mg·kg-1 and contents of texturizer and moisture of 6,45 and 25,95%, respectively. The obtained variable ranges ensure a compromise solution that maximizes the mass of TPH removed and keeps the contaminant concentration under the Cuban disposal regulations. The results have been used to set up the biopiles at a pilot scale as a subsequent project stage.
File in questo prodotto:
File Dimensione Formato  
RIIv43n2Art_97848+RV2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982866