: This article introduces a novel model of asymmetric neural networks combined with fractional difference memristors, which has both theoretical and practical implications in the rapidly evolving field of computational intelligence. The proposed model includes two types of fractional difference memristor elements: one with hyperbolic tangent memductance and the other with periodic memductance and memristor state described by sine functions. The authenticity of the constructed memristor is confirmed through fingerprint verification. The research extensively investigates the dynamics of a coupled neural network model, analyzing its stability at equilibrium states, studying bifurcation diagrams, and calculating the largest Lyapunov exponents. The results suggest that when incorporating sine memristors, the model demonstrates coexisting state variables depending on the initial conditions, revealing the emergence of multi-layer attractors. The article further demonstrates how the memristor state shifts through numerical simulations with varying memductance values. Notably, the study emphasizes the crucial role of memductance (synaptic weight) in determining the complex dynamical characteristics of neural network systems. To support the analytical results and demonstrate the chaotic response of state variables, the article includes appropriate numerical simulations. These simulations effectively validate the presented findings and provide concrete evidence of the system's chaotic behavior.
Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor / He, Shaobo; Vignesh, D; Rondoni, Lamberto; Banerjee, Santo. - In: NEURAL NETWORKS. - ISSN 0893-6080. - STAMPA. - 167:(2023), pp. 572-587. [10.1016/j.neunet.2023.08.041]
Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor
Rondoni, Lamberto;Banerjee, Santo
2023
Abstract
: This article introduces a novel model of asymmetric neural networks combined with fractional difference memristors, which has both theoretical and practical implications in the rapidly evolving field of computational intelligence. The proposed model includes two types of fractional difference memristor elements: one with hyperbolic tangent memductance and the other with periodic memductance and memristor state described by sine functions. The authenticity of the constructed memristor is confirmed through fingerprint verification. The research extensively investigates the dynamics of a coupled neural network model, analyzing its stability at equilibrium states, studying bifurcation diagrams, and calculating the largest Lyapunov exponents. The results suggest that when incorporating sine memristors, the model demonstrates coexisting state variables depending on the initial conditions, revealing the emergence of multi-layer attractors. The article further demonstrates how the memristor state shifts through numerical simulations with varying memductance values. Notably, the study emphasizes the crucial role of memductance (synaptic weight) in determining the complex dynamical characteristics of neural network systems. To support the analytical results and demonstrate the chaotic response of state variables, the article includes appropriate numerical simulations. These simulations effectively validate the presented findings and provide concrete evidence of the system's chaotic behavior.File | Dimensione | Formato | |
---|---|---|---|
Manuscript- Neural Network-1.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
10.48 MB
Formato
Adobe PDF
|
10.48 MB | Adobe PDF | Visualizza/Apri |
main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982623