Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.
Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions / Krejci, P.; Monteiro, G. A.; Recupero, V.. - In: SET-VALUED AND VARIATIONAL ANALYSIS. - ISSN 1877-0541. - ELETTRONICO. - 31:4(2023), pp. 1-38. [10.1007/s11228-023-00695-y]
Viscous Approximations of Non-Convex Sweeping Processes in the Space of Regulated Functions
Krejci P.;Recupero V.
2023
Abstract
Vanishing viscosity approximations are considered here for discontinuous sweeping processes with non-convex constraints. It is shown that they are well-posed for sufficiently small viscosity parameters, and that their solutions converge pointwise, as the viscosity parameter tends to zero, to the left-continuous solution to the sweeping process in the Kurzweil integral setting. The convergence is uniform if the input is continuous.File | Dimensione | Formato | |
---|---|---|---|
prox-visc(sub).pdf
accesso riservato
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
440.44 kB
Formato
Adobe PDF
|
440.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
prox-visc_rev9.pdf
Open Access dal 20/09/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
451.04 kB
Formato
Adobe PDF
|
451.04 kB | Adobe PDF | Visualizza/Apri |
s11228-023-00695-y.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982545