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Viscous approximations of non-convex sweeping
processes in the space of regulated functions

Pavel Krejč́ı∗, Giselle Antunes Monteiro†, Vincenzo Recupero‡§

Abstract

Vanishing viscosity approximations are considered here for discontinuous sweep-
ing processes with non-convex constraints. It is shown that they are well-posed
for sufficiently small viscosity parameters, and that their solutions converge point-
wise, as the viscosity parameter tends to zero, to the left-continuous solution to the
sweeping process in the Kurzweil integral setting. The convergence is uniform if the
input is continuous.

Keywords: Evolution variational inequalities, Sweeping processes, Vanishing viscos-
ity, Prox-regular sets, Regulated functions
2010 AMS Subject Classification: 49J40, 47J20, 34A60, 34G25

Introduction

Sweeping processes have been introduced in [27] as an abstract setting of problems arising
for example in elastoplasticity modeling, where the constitutive relation can be formu-
lated as a constrained evolution system. Typically, the functional framework consists in
assuming that

X is a real Hilbert space (0.1)

endowed with scalar product 〈·, ·〉 and norm |x| =
√
〈x, x〉 for x ∈ X , and one considers

a family C(t) ⊂ X of nonempty closed subsets of X parameterized by the time variable
t ∈ [0, T ] , where T > 0 is some given final time. The problem is to find a function
ξ : [0, T ]→ X with a prescribed initial condition ξ(0) = ξ0 ∈ C(0), such that ξ(t) ∈ C(t)
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for all t ∈ [0, T ] and its derivative at time t points in the inward normal direction to C(t)
at the point ξ(t). Formally, this can be stated as

−ξ̇(t) ∈ NC(t)(ξ(t)) for t ∈ (0, T ), ξ(0) = ξ0, (0.2)

where both the “time derivative” ξ̇(t) and the outward normal cone NC(t)(ξ(t)) to C(t)
at the point ξ(t) have to be given an appropriate meaning.

In the paper [27], this problem is uniquely solved provided that C(t) is convex for
every time t and that the mapping t 7→ C(t) is absolutely continuous in terms of the
Hausdorff distance. In this case the solution ξ turns out to be absolutely continuous
and (0.2) is satisfied almost everywhere. In [28] the analysis of sweeping processes was
then extended to the case when the convex moving set C(t) has bounded variation with
respect to the Hausdorff metric. Under this weaker assumption, inclusion (0.2) has to be
properly interpreted in the sense of the differential measures and it is shown to admit a
unique solution of bounded variation.

The study of non-convex sweeping processes started with M. Valadier [33] and, since
then, has called the attention of many other authors, e. g., [3, 10, 31]. An important
concept which allows to get around the convexity of sets is the notion of uniform prox-
regularity. These are closed sets having a neighborhood where the projection exists
uniquely and in a continuous way. Sets with such a property appear in the literature
under different terminologies; being introduced under the name of ‘positively reached
sets’ by H. Federer [15] in finite dimensional setting. A series of properties as well as
the connection between sets and functions was deeply investigated in [34] (therein called
‘weak convex sets/functions’). The notion of prox-regularity was later extended to infinite
dimensional spaces ([9, 30]), and appears to lead to an appropriate class of non-convex
sets for which one can prove existence and uniqueness results for sweeping processes, see
for instance [1, 4, 5, 8, 14]. Especially, for a given parameter r > 0, we will consider the
notion of r -prox-regular set Z , which in particular enjoys of the property that a projec-
tion is uniquely defined in the r -neighborhood of Z . Here, we show in Lemma 1.3 that
the parameter r can also be interpreted as the maximal radius of exterior balls tangent
to Z .

A recent paper [29] presents a fairly general result for BV sweeping processes with
prox-regular constraints. The case when the moving uniform prox-regular constraint has
unbounded variation was instead dealt with in [12] where it is assumed that C(t) is
continuous in time: In this paper a so-called interior cone condition is also required,
which essentially means that cusps are not admitted on the boundary.

In [24], we have separated the effects of translation and shape change of the set C(t)
by representing it in the form C(t) = u(t) − Z(w(t)) for given u : [0, T ] → X and
w(t) : [0, T ] → A , where A is a closed set of parameters in a Banach space W . The
motivation comes from application in plasticity theory, where u and w have different
meanings. Typically, u can be interpreted as stress tensor, and w can be, for example,
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a fatigue parameter, see [18, 32]. In this case, Z(w) is the admissible stress domain and
its boundary ∂Z(w) is the yield surface.

If we allow both u and w to be regulated functions, that is, both right and left
limits exist at each point of the domain of definition, then the Kurzweil theory of integra-
tion offers an efficient formalism for interpreting sweeping processes as Kurzweil integral
variational inequalities. A detailed exposition of the method in the context of convex
constraints can be found, e. g., in [22].

We denote by G(0, T ;X) and G(0, T ;W ) the space of regulated functions with val-
ues in X (in W , respectively) endowed with the sup-norm, and by BV (0, T ;X) the
dense subset of G(0, T ;X) of functions of bounded variation. Under the assumption
that u ∈ G(0, T ;X) and w ∈ G(0, T ;W ) are right-continuous, and {Z(w) : w ∈ W}
is a family of r -prox-regular sets depending continuously on w in terms of the Haus-
dorff distance, we have proved that u(t) can be split into a sum u(t) = x(t) + ξ(t) of
right-continuous regulated functions in such a way that x(t) ∈ Z(w(t)) for all t ∈ [0, T ] ,
ξ ∈ BV (0, T ;X), and the sweeping process (0.2) reformulated in terms of the Kurzweil
integral with V (ξ)(t) := Var[0,t](ξ)∫ T

0

〈x(t)− z(t), dξ(t)〉+
1

2r

∫ T

0

|x(t)− z(t)|2 dV (ξ)(t) ≥ 0

∀z ∈ G(0, T ;X), z(t) ∈ Z(w(t)) for all t ∈ [0, T ], (0.3)

admits a unique solution (ξ, x) for each given initial condition x(0) = x0 ∈ Z(w(0)).
The aim of this paper is to study viscous approximations of non-convex Kurzweil

sweeping processes of the form (0.3) under an additional hypothesis that the set Z does
not depend on w , that is, the motion of C(t) is driven only by translation. More specif-
ically, we assume that Z ⊂ X is an r -prox-regular set (see Definition 1.1 below), and
consider the mapping which with a given u ∈ G(0, T ;X) and with a given initial condi-
tion x0 ∈ Z associates the solution ξ ∈ G(0, T ;X) of the Kurzweil integral variational
inequality∫ τ

0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉+
1

2r

∫ τ

0

|u(t+)− ξ(t+)− z(t)|2 dV (ξ(t)) ≥ 0 (0.4)

for all z ∈ G(0, T ;Z) and all τ ∈ [0, T ] under the constraint u(t) − ξ(t) ∈ Z for all
t ∈ [0, T ] , and with initial condition ξ(0) = u(0)− x0 .

By a viscous approximation we mean the solution ξε of the differential equation

εξ̇ε(t) =
f(|D(u(t)− ξε(t))|)
|D(u(t)− ξε(t))| D(u(t)− ξε(t)), ξε(0) = ξ(0), (0.5)

where f is a convex function such that f(0) = 0, and D is the distance mapping de-
fined below in Section 1. We call (0.5) “viscous approximation” of (0.4) by analogy to
applications in viscoelastoplasticity, where f(p) = p for p ≥ 0 and ε is the viscosity
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coefficient. A power law f(p) = pm−1 for m ≥ 2 is used as penalty function in [11] in
the study of well-posedness of a sweeping process under integral forcing. More general
classes of functions f turn out to be useful in applications to optimal control problems,
see [7, 17, 21]. The reason is that in optimal control, the limit as ε→ 0 has to be taken
simultaneously in the constitutive relation and in the associated Euler-Lagrange condi-
tion, which behave differently near the critical boundary. As the main result here, we
prove that the solution ξε of (0.5) converge pointwise as ε ↘ 0 to the left-continuous
representative of the solution ξ of (1.1).

The fact that the viscous limit gives the left continuous representative of ξ indepen-
dently of whether or not the input u is left continuous has already been observed in [22, 23]
for the case of convex constraints and regulated inputs. Note that the case f(p) = p in
(0.5) corresponds also to the Moreau-Yosida approximation of the sweeping process. The
first result on the topic goes back to Moreau’s original work [27] on convex sweeping
processes with absolutely continuous inputs. The convergence of Moreau-Yosida approx-
imations was then further explored by other authors, e. g., [25]. Recently, a similar result
in the non-convex case was proved in [20] under an additional compactness assumption.
Let us also mention another approach to regularization which has been exploited in [13],
where the approximation does not rely on the distance function, and the approximated
solution lies always in the interior of the constraint.

The structure of the paper is as follows. In Section 1, we recall the properties of
r -prox-regular sets and prove in Lemma 1.3 an alternative equivalent definition based on
the geometric idea of tangent balls of radius r . The main results are stated in Section
2. The most substantial step is made in Section 3, where we prove that for sufficiently
small ε , Problem (0.5) admits a global solution for every left-continuous regulated input
with sufficiently small jumps, and that the total variations of the solutions are bounded
independently of ε . This is indeed nontrivial, as the distance function is defined only in
the r -neighborhood of the set Z , and one has to make sure that the solution stays globally
within this range. In Section 4, we prove that the mapping which with u associates the
solution ξε to (0.5) is locally 1/2-Hölder continuous with constants independent of ε .
Section 5 is devoted to an explicit formula for the solution of (0.5) in the case of piecewise
constant input u . These results are then used in Section 6 for the proof of the pointwise
convergence of ξε toward the solution of the Kurzweil integral variational inequality (0.4).
The convergence is uniform if u is continuous, and this fact is proved in Section 7.

1 Prox-regular sets in a Hilbert space

There are several equivalent approaches to prox-regularity – see, e. g., [30]. In particular,
the definition below corresponds to items (a) and (g) of Theorem 4.1 in [30].

Definition 1.1. Let Z ⊂ X be a closed connected set and let d(y) := dist(y, Z) =
inf{|x− z| : z ∈ Z} denote the distance of a point y ∈ X from the set Z . Let r > 0 be

4



given. We say that Z is r -prox-regular if the following condition hold.

∀y ∈ X : d(y) ∈ (0, r) ∃x ∈ Z : dist

(
x+

r

d(y)
(y − x), Z

)
=

r

d(y)
|y − x| = r. (1.1)

The following variational characterization of r -prox-regularity is proved for example
in [24, Lemma 1.3].

Lemma 1.2. A set Z ⊂ X is r -prox-regular if and only if for every y ∈ X such that
d(y) = dist(y, Z) < r there exists a unique x ∈ Z such that |y − x| = d(y) and

〈y − x, x− z〉+
|y − x|

2r
|x− z|2 ≥ 0 ∀z ∈ Z. (1.2)

Formula (1.2) can be used for introducing the concept of projection Q : Z+Br(0)→ Z ,
where Br(0) denotes the open ball centered at 0 with radius r , which with a given
y ∈ Z +Br(0) associates x ∈ Z satisfying (1.2).

We further define the distance mapping D : Z +Br(0)→ Br(0) by the formula

D(y) = y −Q(y) (1.3)

for y ∈ Z + Br(0). For y ∈ Z we have indeed D(y) = 0, and for y ∈ Z + Br(0) \ Z we
have |D(y)| = d(y) > 0. We prove below in Lemma 1.4 that both Q and D are locally
Lipschitz continuous in Z +Br(0).

There exists a simple geometric characterization of r -prox-regularity which implies in
particular that a nonempty closed set Z ⊂ X is r -prox-regular for every r > 0 if and
only if it is convex. The exact statement reads as follows.

Lemma 1.3. Let Z ⊂ X be a nonempty closed set. Then the following two conditions
are equivalent.

(i) Z is r -prox-regular;

(ii) x, y ∈ Z , |x− y| < 2r =⇒ dist(1
2
(x+ y), Z) ≤ r −

√
r2 − 1

4
|x− y|2 .

Proof. Assume first that Z is r -prox-regular, let x, y ∈ Z be chosen such that d :=
1
2
|x − y| < r , put x̄ = 1

2
(x + y), ρ = dist(x̄, Z), and assume that ρ > 0. We have

indeed ρ ≤ |x̄ − x| = 1
2
|x − y| < r . Let z := Q(x̄). By definition of prox-regularity

the point ȳ := z + r
ρ
(x̄ − z) has the property that dist(ȳ, Z) = r . Using the identity

|u+ v|2 + |u− v|2 = 2(|u|2 + |v|2) for u = x̄− ȳ , v = 1
2
(x− y) we have

4r2 ≤ 2
(
|ȳ − x|2 + |ȳ − y|2

)
= |x− y|2 + 4|ȳ − x̄|2 = |x− y|2 + 4(r − ρ)2,

which yields (r − ρ)2 ≥ r2 − 1
4
|x− y|2 , and (ii) follows.
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Conversely, assume that (ii) holds, and let y ∈ X be chosen such that d = dist(y, Z) ∈
(0, r). We find a sequence {xn : n ∈ N} ⊂ Z such that εn := |y−xn|− d↘ 0. We define
ε∗ > 0 as the positive solution of the equation r −

√
r2 − (d+ ε∗)2 = d− ε∗ , that is,

ε∗ =

√
r2

4
+ rd− d2 − r

2
,

and we may assume that
0 < εn < ε∗ ∀n ∈ N. (1.4)

Observe that ε∗ < r − d , thus we have |xn − xm| ≤ 2d + εn + εm < 2d + 2ε∗ < 2r , and
from Hypothesis (ii) and inequality (1.4) it follows for all m,n ∈ N that

ρnm := dist

(
1

2
(xn + xm), Z

)
≤ r −

√
r2 − 1

4
|xn − xm|2 < r −

√
r2 − (d+ ε∗)2 = d− ε∗.

(1.5)
Let us recall the identity

2
(
|y − xn|2 + |y − xm|2

)
= |xn − xm|2 + 4

∣∣∣∣y − 1

2
(xn + xm)

∣∣∣∣2 . (1.6)

We find znm ∈ Z such that |1
2
(xn + xm) − znm| < ρnm + εn + εm < d by virtue of (1.5).

The triangle inequality yields∣∣∣∣y − 1

2
(xn + xm)

∣∣∣∣ ≥ |y − znm| − (ρnm + εn + εm),

and from (1.6) we obtain

1

2

(
(d+ εn)2 + (d+ εm)2

)
≥ 1

4
|xn − xm|2 + (d− (ρnm + εn + εm))2, . (1.7)

which implies in particular that

1

4
|xn − xm|2 ≤ 3d(εn + εm) + 2dρnm. (1.8)

On the other hand, noting that by (1.5) we have

(r − ρnm)2 ≥ r2 − 1

4
|xn − xm|2, (1.9)

by adding (1.9) to (1.7) we obtain

r2−2rρnm+ρ2nm+d2+d(εn+εm)+
1

2
(ε2n+ε2m) ≥ r2+d2−2d(ρnm+εn+εm)+(ρnm+εn+εm)2,
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which yields
2(r − d)ρnm ≤ 3d(εn + εm). (1.10)

Therefore, from (1.8) we get

1

4
|xn − xm|2 ≤

3rd

r − d(εn + εm). (1.11)

We conclude that {xn} is a Cauchy sequence in X , and its limit x̄ = limn→∞ xn is the
projection of y onto Z .

It remains to prove that if dist(y, Z) = d ∈ (0, r) and |x − y| = d , then dist(x +
(s/d)(y − x), Z) = s for every s ∈ (d, r] . Let d ∈ (0, r) be given and let

ε0 :=
d(r − d)

r + d
< ε∗ (1.12)

with ε∗ from (1.4). We first prove the following implication:

dist(y, Z) = d, x = Qy ⇒ dist

(
x+

d+ ε

d
(y − x), Z

)
= d+ ε ∀ε ∈ (0, ε0]. (1.13)

Indeed, this implies that sup{s ∈ [d, r] : dist(x + (s/d)(y − x), Z) = s} = r which is the
desired statement. It suffices to define the sequences d0 = d , εj = dj(r − dj)/(r + dj),
dj+1 = dj + εj for j ∈ N , apply repeatedly (1.13) replacing d with dj and ε0 with εj ,
and check that dj → r as j →∞ .

To prove (1.13), we proceed by contradiction. We define the unit vector n = (y−x)/d .
Assume that there exists ε < ε0 and xε ∈ Z such that

|x+ (d+ ε)n− xε| < d+ ε,

that is,
|x− xε|2 + 2(d+ ε) 〈n, x− xε〉 < 0. (1.14)

Let zε = Q(1
2
(x+ xε)). We have |x+ dn− zε| > d and∣∣∣∣x+ xε

2
− zε

∣∣∣∣ ≤ r −
√
r2 − 1

4
|x− xε|2. (1.15)

Hence, by the triangle inequality

d <

∣∣∣∣x+ xε
2
− zε

∣∣∣∣+

∣∣∣∣x− xε2
+ dn

∣∣∣∣ . (1.16)

We use (1.14) to estimate∣∣∣∣x− xε2
+ dn

∣∣∣∣2 = d2 +
1

4
|x− xε|2 + d 〈n, x− xε〉 < d2 − λε

4
|x− xε|2= d2 − λε∆2

ε,
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where we set λε = d−ε
d+ε

> 0 and ∆ε = 1
2
|x− xε| . From (1.15)–(1.16) we thus get

d < r −
√
r2 −∆2

ε +
√
d2 − λε∆2

ε,

or, equivalently, √
r2 −∆2

ε −
√
d2 − λε∆2

ε < r − d. (1.17)

We have by (1.14) that ∆ε < d+ ε and λε∆
2
ε < d2− ε2 . The fact that the left-hand side

of (1.17) is positive follows from the sequence of inequalities

r2 − d2 − (1− λε)∆2
ε > r2 − d2 − 1− λε

λε
(d2 − ε2) > r2 − d2 − 4εd > 0

as a consequence of (1.12) and of the fact that ε ≤ ε0 . We square both sides of (1.17)
and get

rd− 1 + λε
2

∆2
ε <

√
r2 −∆2

ε

√
d2 − λε∆2

ε. (1.18)

The left-hand side of (1.18) can be estimated from below by d(r−d−ε) > 0. The square
of (1.18) yields that

λεr
2 + d2 − (1 + λε)rd <

(
λε −

(
1 + λε

2

)2
)

∆2
ε = − ε2

(d+ ε)2
∆2
ε,

that is,

d(r − d) < ε(r + d)− ε2

(d+ ε)(r − d)
∆2
ε,

which contradicts the choice of ε . This completes the proof of Lemma 1.3. �

The distance mapping D is locally Lipschitz continuous in the following sense.

Lemma 1.4. Let y1, y2 ∈ X be such that

d(yi)= |D(yi)| ≤
r

(1 + κ)2

for some κ > 0 and i = 1, 2 . Then

|D(y1)−D(y2)| ≤
(

1 +

√
3

κ

)
|y1 − y2|.

Proof. For i = 1, 2 put ξi = D(yi). We have by (1.2) that

〈ξ1, y1 − ξ1 − y2 + ξ2〉+
|ξ1|
2r
|y1 − ξ1 − y2 + ξ2|2 ≥ 0,

〈ξ2, y2 − ξ2 − y1 + ξ1〉+
|ξ2|
2r
|y1 − ξ1 − y2 + ξ2|2 ≥ 0.

8



Summing up the above inequalities we get

|ξ1 − ξ2|2 ≤ 〈ξ1 − ξ2, y1 − y2〉+
1

(1 + κ)2
(
|y1 − y2|+ |ξ1 − ξ2|

)2
. (1.19)

The Young inequality yields

2

(1 + κ)2
|y1 − y2| |ξ1 − ξ2| ≤

κ

(1 + κ)2
|ξ1 − ξ2|2 +

1

κ(1 + κ)2
|y1 − y2|2,

〈ξ1 − ξ2, y1 − y2〉 ≤
κ

2(1 + κ)
|ξ1 − ξ2|2 +

1 + κ

2κ
|y1 − y2|2.

From (1.19) we obtain

|ξ1 − ξ2|2 ≤
(1 + κ)2 + 2

κ2
|y1 − y2|2,

and the assertion follows from the inequality (1 + κ)2 + 2 ≤ (κ+
√

3)2 . �

Let us mention a superposition formula for the distance mapping which will be used
later on in Section 5.

Lemma 1.5. Let Z be r -prox-regular and let D be the mapping defined by (1.3). Then
for every y ∈ Z +Br(0) and every δ ∈ (−1, d∗(y)) we have

D(y + δD(y)) = (1 + δ)D(y), (1.20)

where
d∗(y) =

r

d(y)
− 1 for d(y) > 0, d∗(y) =∞ for d(y) = 0.

Proof. It suffices to prove that

Q(Q(y) + (1 + δ)D(y)) = Q(y) (1.21)

for every y ∈ Z +Br(0). Indeed, if (1.21) holds, then

D(y + δD(y)) = D(Q(y) + (1 + δ)D(y)) = Q(y) + (1 + δ)D(y)−Q(Q(y) + (1 + δ)D(y))

= (1 + δ)D(y),

and (1.20) follows. To prove (1.21), we denote v = Q(y), w = Q(Q(y) + (1 + δ)D(y)),
and use (1.2) to obtain

〈y − v, v − w〉+
|y − v|

2r
|v − w|2 ≥ 0,

〈v + (1 + δ)(y − v)− w,w − v〉+
|v + (1 + δ)(y − v)− w|

2r
|v − w|2 ≥ 0.
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We add to the second inequality above the (1 + δ)-multiple of the first inequality and
obtain

|v − w|2 ≤ (1 + δ)|D(y)|+ |v + (1 + δ)D(y)− w|
2r

|v − w|2.

We have by hypothesis (1 + δ)|D(y)| < r , |v+ (1 + δ)D(y)−w| < r , hence v = w , which
we wanted to prove. �

The following result recalls the known relation between the distance function d and
the distance mapping D , see e.g. [30]. For the reader’s convenience, the result is stated
here in a way which suits our discussion and we give an elementary proof.

Lemma 1.6. For y ∈ Z +Br(0) put ψ(y) = 1
2
d2(y) . Then the directional derivative

ψ′(y; v) := lim
δ→0

1

δ
(ψ(y + δv)− ψ(y))

exists for every y ∈ Z +Br(0) and v ∈ X , and we have ψ′(y; v) = 〈D(y), v〉 , that is,

D(y) = ∇ψ(y) ∀y ∈ Z +Br(0). (1.22)

Proof. For all δ ∈ (−δ0, δ0), where δ0 > 0 is such that δ0|v| < r − d(y), we have

1

δ
(ψ(y + δv)− ψ(y)) =

1

2δ
〈D(y + δv)−D(y), D(y + δv) +D(y)〉

=
1

2δ
|D(y + δv)−D(y)|2 +

1

δ
〈D(y + δv)−D(y), D(y)〉 . (1.23)

We have |D(y + δv) −D(y)| ≤ C0δ|v| with a constant C0 > 0 independent of δ , hence
the first term on the right hand side of (1.23) tends to 0 as δ → 0. To handle the second
term, we use the fact that by definition of D , we have

〈D(y), y −D(y)− z〉+
|D(y)|

2r
|y −D(y)− z|2 ≥ 0 ∀z ∈ Z. (1.24)

We may choose in particular z = Q(y + δv) = (y + δv)−D(y + δv) and obtain

〈D(y), D(y + δv)−D(y)〉 ≥ δ 〈D(y), v〉 − C1δ
2|v|2 (1.25)

where C1 > 0 is a constant independent of δ . We similarly have

〈D(y + δv), y + δv −D(y + δv)− z〉+ |D(y + δv)|
2r

|y+ δv−D(y+ δv)− z|2 ≥ 0 ∀z ∈ Z,

which for z = y −D(y) yields

〈D(y + δv), D(y)−D(y + δv)〉 ≥ −δ 〈D(y + δv), v〉 − C2δ
2|v|2
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with a constant C2 > 0 independent of δ , and consequently

〈D(y), D(y + δv)−D(y)〉 ≤ δ 〈D(y), v〉+ C3δ
2|v|2 (1.26)

with a constant C3 > 0 independent of δ . Combining (1.25) with (1.26) we obtain the
assertion. �

We make now an additional assumption about the geometry of the set Z .

Hypothesis 1.7. The set Z is r-prox-regular with some r > 0 , and there exist constants
R ≥ 3 and ρ > 0 such that

ρ <
r

4(R + 6)2
(1.27)

∀x ∈ Z ∃x∗ ∈ Z : |x− x∗| ≤ Rρ, B3ρ(x
∗) ⊂ Z. (1.28)

Conditions (1.27)–(1.28) may look a bit complicated, however, that is just another
formulation of the interior cone condition introduced in [12] in the form

∃h > σ > 0 ∀x ∈ Z ∃x̄ ∈ Z ∀α ∈ [0, 1] : (1−α)x+αx̄+Bασ(0) ⊂ Z, |x− x̄| ≤ h. (1.29)

The equivalence proof is given in [24] for different values of the constants. For the reader’s
convenience, we modify the proof for the present case.

Lemma 1.8. Let Hypothesis 1.7 hold. Then the interior cone condition (1.29) is satisfied
for σ = ρ and h = Rρ . Conversely, if the set Z satisfies (1.29), then conditions (1.27)–
(1.28) are fulfilled with R, ρ given in terms of h, σ .

Proof. Assume for contradiction that conditions (1.27)–(1.28) hold and that (1.29) with
σ = ρ and x̄ = x∗ is violated. In other words, there exists α0 ∈ [0, 1] and z ∈ B1(0)
with z 6= 0, such that xα0 := x + α0(x̄ − x + ρz) 6∈ Z . Since x1 = x̄ + ρz belongs to Z
by hypothesis, we have that α0 < 1, and the segment connecting xα0 and x1 necessarily
intersects the boundary ∂Z of Z . There exists therefore α ∈ (0, 1) such that

xα := x+ α(x̄− x) + αρz ∈ ∂Z.

By Lemma 1.5 of [24], there exists ξ ∈ X , |ξ| = 1 such that dist(xα + rξ, Z) = r . By
hypothesis, both x and x̄+ 3ρξ belong to Z , hence

|xα + rξ − x| ≥ r,

|xα + (r − 3ρ)ξ − x̄| ≥ r.

In other words,

|α(x̄− x) + αρz + rξ| ≥ r,

|(1− α)(x̄− x)− (r − 3ρ)ξ − αρz| ≥ r,
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hence, using the triangle inequality and the fact that |z| ≤ 1,

|α(x̄− x) + rξ| ≥ r − αρ,
|(1− α)(x̄− x)− (r − 3ρ)ξ| ≥ r − αρ,

and, squaring both inequalities,

α2|x̄− x|2 + 2αr 〈ξ, x̄− x〉 ≥ −2αrρ+ α2ρ2,

(1− α)2|x̄− x|2 − 2(1− α)(r − 3ρ) 〈ξ, x̄− x〉 ≥ 6rρ− 9ρ2 − 2αrρ+ α2ρ2.

Taking into account that r − 3ρ > 0 by (1.27), we sum up suitable positive multiples of
the two above inequalities and eliminate the term 〈ξ, x̄− x〉 to obtain

(1− α)

(
1− α + α

r − 3ρ

r

)
|x̄− x|2 ≥ rρ

(
6− 2α− 2(1− α)

r − 3ρ

r

)
+ ρ2

(
−9 + α2 + α(1− α)

r − 3ρ

r

)
.

(1.30)

Therefore, since (r − 3ρ)/r < 1, from (1.28) and (1.30) we infer that

R2ρ2 ≥ |x̄− x|2 ≥ 4rρ− 9ρ2.

This implies that (R2 + 9)ρ ≥ 4r , which contradicts (1.27).
To prove the opposite implication, assume that (1.29) holds and that x ∈ Z is arbi-

trarily chosen. It suffices to put ρ = ασ/3, x∗ = (1 − α)x + αx̄ , R = αh/ρ = 3h/σ ,
where α = α(h, σ) > 0 is chosen in such a way that

(R + 6)2ρ = 3α

(
h

σ
+ 2

)2

σ <
r

4
,

and the proof is complete. �

2 Statement of the problem

We denote by G(0, T ;X) the space or regulated functions u : [0, T ] → X , that is,
functions which admit both one-sided limits u(t+), u(t−) at each point t ∈ [0, T ] with
the convention u(0−) = u(0), u(T+) = u(T ). This is a Banach space with norm (see [2],
Chapter II of [6], or [16, Proposition 4.1],)

|u|[0,T ] = sup
t∈[0,T ]

|u(t)|. (2.1)

The main object studied in this paper is the ODE

εξ̇ε(t) =
f(|D(u(t)− ξε(t))|)
|D(u(t)− ξε(t))| D(u(t)− ξε(t)), ξε(0) = ξε0, (2.2)
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in a time interval t ∈ (0, T ) with a given initial condition ξε0 ∈ X such that d(u(0+)−ξε0) <
r , and with unknown function ξε , where ε > 0 is a a small parameter, f : [0, r) → R+

is an increasing convex function with f(0) = 0, and u ∈ G(0, T ;X) is a given input
function satisfying an additional hypothesis on the size of jumps. It is understood that
εξ̇ε(t) = 0 whenever D(u(t) − ξε(t)) = 0, thus (2.2) can be formally restated as the
following problem.

Problem 2.1. Assume that ε > 0 , ξε0 ∈ X , and that f : [0, r) → R+ is an increasing
convex function with f(0) = 0 . Let g : Br(0)→ X be defined by the formula

g(v) :=
f(|v|)
|v| v for v ∈ Br(0) \ {0}, g(0) := 0 . (2.3)

Find an absolutely continuous function ξε : [0, T ]→ X such that

εξ̇ε(t) = g(D(u(t)− ξε(t))) (2.4)

for a. e. t ∈ [0, T ] , and
ξε(0) = ξε0. (2.5)

The mapping g is Lipschitz continuous on the ball Bδ := {v ∈ X : |v| ≤ (1− δ)r} for
each δ ∈ (0, 1). Indeed, for v, w ∈ Bδ we have

|g(v)− g(w)|2 ≤ (f(|v|)− f(|w|))2 +
f(|v|)f(|w|)
|v||w| |v − w|2,

and the Lipschitz continuity follows from the convexity of f . Hence, by Lemma 1.4, also
the mapping g ◦D is Lipschitz continuous on the set Zδ := {y ∈ X : d(y) ≤ (1 − δ)r} .
We put

Kδ = sup
s∈(0,(1−δ)r)

f(s), Lδ = sup
y1,y2∈Zδ
y1 6=y2

|g(D(y1))− g(D(y2))|
|y1 − y2|

. (2.6)

We now prove the existence and uniqueness of a local solution in an interval [t0, t1] to
(2.2) for each ε > 0 and each initial condition ξε(t0) as long as |D(u(t)− ξε(t))| < r .

Lemma 2.2. Let α, β, γ, δ, ε be positive numbers such that α + β + γ + δ ≤ 1 , and
assume that u ∈ G(0, T ;X) , ξε∗ ∈ X , and 0 ≤ t0 < t0 + σ ≤ T are given such that
|u(t)− u(t0+)| ≤ αr for t ∈ (t0, t0 + σ] , and d(u(t0+)− ξε∗) ≤ βr . Put

t1 = t0 + min

{
σ,
εγr

Kδ

}
,

where Kδ is defined in (2.6). Then there exists a unique absolutely continuous function
ξε in the set

Σ = {η ∈ C([t0, t1];X) : η(t0) = ξε∗, |η(t)− ξε∗| ≤ γr ∀t ∈ [t0, t1]}
such that (2.4) holds for a.e. t ∈ [t0, t1] . Moreover d(u(t) − ξε(t)) ≤ (1 − δ)r for every
t ∈ [t0, t1] .
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Proof. We prove that the mapping η ∈ Σ 7→ ξε ∈ C([t0, t1];X) defined by the formula

ε(ξε(t)− ξε∗) =

∫ t

t0

g(D(u(τ)− η(τ))) dτ, t ∈ [t0, t1] (2.7)

is a contraction on Σ. The right-hand side of (2.7) is meaningful provided that d(u(τ)−
η(τ)) < r for τ ∈ [t0, t1] . This is indeed the case. For z ∈ Z we have that

|u(τ)− η(τ)− z| ≤ |u(t0+)− η(t0)− z|+ |u(τ)− u(t0+)|+ |η(τ)− η(t0)|
≤ |u(t0+)− η(t0)− z|+ (α + γ)r,

hence d(u(τ)− η(τ)) ≤ (α + β + γ)r ≤ (1− δ)r . Moreover for t ∈ [t0, t1] we have

|ξε(t)− ξε∗| ≤
(t− t0)Kδ

ε
≤ γr, (2.8)

hence ξε ∈ Σ. To prove that the mapping η 7→ ξε is a contraction, we consider η1, η2 ∈ Σ
and the corresponding ξε1, ξ

ε
2 given by (2.7). We have u(t) − ηi(t) ∈ Zδ for i = 1, 2 and

t ∈ (t0, t1] . Hence, by definition (2.6) of Lδ , we have for t ∈ [t0, t1] the inequality

ε|ξε1(t)− ξε2(t)| ≤ Lδ

∫ t

t0

|η1(τ)− η2(τ)| dτ. (2.9)

We define for ν > 0 the following complete norm in C([t0, t1];X) by the formula

‖η‖ν = max
t∈[t0,t1]

e−νt|η(t)|. (2.10)

It follows from (2.9) that

e−νt|ξε1(t)− ξε2(t)| ≤
Lδ
ε

e−νt‖η1 − η2‖ν
∫ t

t0

eντ dτ =
Lδ
νε

(1− e−ν(t−t0))‖η1 − η2‖ν .

It suffices to choose ν > Lδ/ε to check that the mapping η 7→ ξε is a contraction with
respect to the norm ‖ · ‖ν , and the proof is complete. �

Let us mention the following immediate consequence of Lemma 2.2.

Corollary 2.3. Let u ∈ G(0, T ;X) , ε > 0 , and ξε∗ ∈ X be given such that d(u(0+) −
ξε∗) < r . Then there exist τ ε ∈ (0, T ] and a unique absolutely continuous function ξε :
[0, τ ε]→ X such that ξε(t0) = ξε∗ , (2.4) holds for a.e. t ∈ [0, τ ε) , and one of the following
two alternatives holds:

(i) τ ε = T ;

(ii) τ ε < T , d(u(τ ε+)− ξε(τ ε)) ≥ r .

14



Proof of Corollary 2.3. The classical argument of [19, Theorem 3.1] guarantees the
existence of a maximal solution to (2.5)–(2.4) characterized by the conditions (i), (ii),
and its uniqueness follows from the contraction argument in Lemma 2.2. �

In fact, we can restrict our considerations to left-continuous inputs u only. For the
sake of completeness, we mention the following easy result.

Lemma 2.4. Let u ∈ G(0, T ;X) be given, and let ξε satisfy the identity

ε(ξε(t)− ξε(t0)) =

∫ t

t0

g(D(u(τ)− ξε(τ))) dτ (2.11)

for t ∈ [t0, t1] . Put ũ(t) = u(t−) for t ∈ (t0, t1] and ũ(t0) = u(t0) with the convention
u(0−) = u(0) . Then we have

ε(ξε(t)− ξε(t0)) =

∫ t

t0

g(D(ũ(τ)− ξε(τ))) dτ. (2.12)

This is indeed an immediate consequence of the fact that u and ũ coincide almost
everywhere.

It is worth mentioning that equation (2.2) can be regarded as a gradient flow. Indeed,
using Lemma 1.6, we derive for y ∈ (Z +Br(0)) \ Z the identity

f(|D(y)|)
|D(y)| D(y) =

f(
√

2ψ(y))√
2ψ(y)

∇ψ(y),

with ψ(y) = 1/2d2(y), and as a consequence (2.2) can be rewritten as

εξ̇ε(t) = ∇Ψ(u(t)− ξε(t)), Ψ(y) = F (ψ(y)), F (s) =

∫ √2s
0

f(σ) dσ for s ≥ 0. (2.13)

The gradient flow setting might be useful in some applications. Instead, in what follows,
we shall systematically use the following equivalent variational formulation of Eq. (2.2).

Lemma 2.5. An absolutely continuous function ξε is a solution of (2.2) if and only if it
satisfies almost everywhere the variational inequality〈
ξ̇ε(t), u(t)− ξε(t)− φε(t)S(ξ̇ε(t))− z

〉
+
|ξ̇ε(t)|

2r
|u(t)− ξε(t)− φε(t)S(ξ̇ε(t))− z|2 ≥ 0

(2.14)
for every z ∈ Z and t ∈ [0, t] , where S(y) = 0 for y = 0 , S(y) = y/|y| for y 6= 0 , and
φε(t) = f−1(ε|ξ̇ε(t)|) with f−1 denoting the inverse function to f .
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Proof. Firstly observe that ε|ξε(t)| = f(|D(u(t)− ξε(t))|) and consequently

φε(t) = f−1(ε|ξ̇ε(t)|) = d(u(t)− ξε(t)). (2.15)

Therefore, an equivalent form of equation (2.2) reads

φε(t)S(ξ̇ε(t)) = D(u(t)− ξε(t)) = u(t)− ξε(t)−Q(u(t)− ξε(t)) a. e. (2.16)

By using this together with Lemma 1.2, for |ξ̇ε(t)| 6= 0 we have〈
φε(t)S(ξ̇ε(t)), u(t)− ξε(t)− φε(t)S(ξ̇ε(t))− z

〉
+
φε(t)

2r
|u(t)−ξε(t)−φε(t)S(ξ̇ε(t))−z|2 ≥ 0

for every z ∈ Z . Thus, the variational inequality (2.14) can be obtained by simply
multiplying the inequality above by |ξ̇ε(t)|/φε(t). �

Following Lemma 2.4, we restrict the set of admissible inputs to a subset U of the set
GL(0, T ;X) of left-continuous regulated functions defined as follows:

u ∈ U ⇐⇒ |u(t+)− u(t)| < r

6
∀t ∈ [0, T ). (2.17)

In the next sections, we prove the following results.

Theorem 2.6. Let Hypothesis 1.7 hold, and let u∗ ∈ U and ξε0 ∈ X be given such that
d(u∗(0+)− ξε0) < (r − ρ)/4 . We denote

U∗ =
{
u ∈ U : |u∗ − u|[0,T ] ≤

ρ

4

}
.

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) and for every u ∈ U∗ Problem
2.1 has a unique global solution ξε ∈ W 1,∞(0, T ;X) such that d(u(t) − ξε(t)) ≤ r/3 for
all t ∈ [0, T ] . Moreover there exists a constant V0 > 0 such that for every u ∈ U∗ and
every ε ∈ (0, ε0) we have

Var
[0,T ]

ξε ≤ V0.

It is worth highlighting that the uniform bound for the output variation is obtained
thanks to the interior cone condition similarly as in [12, 24]. If the solution is constructed
via a time discretization process, then the uniform bound of the input variation automat-
ically implies an uniform bound for the output variation, see [24]. The question whether
this is valid also in the case of viscous approximations deserves to be studied in detail.

The mapping which with u ∈ U∗ associates the solution ξε to Problem 2.1 is locally
Hölder continuous in the following sense.
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Theorem 2.7. Let the hypotheses of Theorem 2.6 hold. Then there exist ε0 > 0 and a
constant L > 0 independent of ε such that for every ε ∈ (0, ε0) and every u1, u2 ∈ U∗
the solutions ξε1, ξ

ε
2 to Problem 2.1 associated with u1, u2 satisfy the inequality

|ξε1 − ξε2|2[0,T ] ≤ L
(
|ξε1(0)− ξε2(0)|2 + |u1 − u2|[0,T ] + |u1 − u2|2[0,T ]

)
. (2.18)

The uniqueness and existence of the solution to (0.4) stated in the previous Theorem
2.8 were proved in [24, Theorem 5.2] for right-continuous inputs. The conversion to the
left-continuous case is easy and is shown in Section 6. The following result shows that
the solution of (0.4) coincides with the viscous limit of ξε as ε→ 0.

Theorem 2.8. Given u ∈ U , there exists a unique solution ξ ∈ GL(0, T ;X) of the
Kurzweil integral variational inequality (0.4) with initial condition ξ0 = u(0)−x0 . More-
over, let ε0 > 0 be given as in Theorem 2.6, and let ξε ∈ W 1,∞(0, T ;X) for ε ∈ (0, ε0)
be the solution of Problem 2.1 with initial condition ξε0 ∈ X such that ξε0 → ξ0 as ε→ 0 .
Then

lim
ε→0

ξε(t) = ξ(t) ∀t ∈ [0, T ].

The convergence in Theorem 2.8 cannot be expected to be uniform, since ξε are
continuous and ξ is not in general. The situation is different if u is continuous, and the
convergence result reads as follows.

Theorem 2.9. Given u ∈ C(0, T ;X) , let ξ ∈ C(0, T ;X) be the solution of the Stieltjes
integral variational inequality (0.4) with initial condition ξ0 = u(0) − x0 , and let ξε ∈
W 1,∞(0, T ;X) be the solution of Problem 2.1 with initial condition ξε0 ∈ X such that
ξε0 → ξ0 as ε→ 0 . Then

lim
ε→0
|ξε − ξ|[0,T ] = 0.

The proofs of Theorems 2.6, 2.7, 2.8, and 2.9 are given in the next sections.

3 Proof of Theorem 2.6

The proof of Theorem 2.6 is based on an iterative procedure related to the sequence of
positive numbers defined recursively by the formula

µi = (µi−1 + θ)2 for i ∈ N, µ0 =
1

4
∈ (µ∗, µ

∗), (3.1)

where θ ∈ (0, 1/4) is given and 0 < µ∗ < µ∗ < 1 are the roots of the equation µ = (µ+θ)2 .
We have indeed

µ∗ =
1

2
− θ +

√
1

4
− θ ∈ (1− 3θ, 1− 2θ) , µ∗ =

1

2
− θ −

√
1

4
− θ ∈

(
θ2

1− 2θ
, θ

)
. (3.2)
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By induction it is easily seen that the sequence {µi} is decreasing, thus limi→∞ µi = µ∗ .
For ` > 0 we further denote

ε` =
`f (µ∗r)

r − ρ , (3.3)

and choose

θ =
Rρ

r
<

R

4(R + 6)2
<

1

4R + 48
∈
(

0,
1

60

)
(3.4)

by virtue of (1.27). In order to restrict the number of special cases to be distinguished,
we assume that the domain of definition of functions u ∈ U is extended to [0,∞) by
putting u(t) = u(T ) for t > T .

Lemma 3.1. Let 0 ≤ a < T and u ∈ U be given, and let ξε be the solution to Problem
2.1 in [0, a] with the convention that only the initial condition ξε(0) = ξε0 is prescribed if
a = 0 . Put ua = u(a+) , ξεa = ξε(a) , and let ` > 0 be such that

|u(t)− ua| < ρ for t ∈ (a, a+ `], (3.5)

d(ua − ξεa) = λ0r (3.6)

with ρ from Hypothesis 1.7 and λ0 < µi for some i ∈ N ∪ {0} , with µi defined in (3.1).
Then for ε < ε` with ε` given by (3.3) the solution ξε to (2.4)–(2.5) exists on [0, a + `]
and we have

d(u(t)− ξε(t)) ≤ λ0r + (R + 2)ρ for t ∈ [a, a+ `]. (3.7)

Furthermore, one of the following two situations occurs.

(i) λ0 ≤ 1
2

√
ρ
r

. Then ∫ a+`

a

|ξ̇ε(t)| dt ≤ r − ρ.

(ii) λ0 >
1
2

√
ρ
r

. Then there exists a continuity point a1 ∈ (a, a + `) of u such that for
µi from (3.1) with θ as in (3.4) we have

d(u(a1)− ξε(a1)) < µi+1r,∫ a1

a

|ξ̇ε(t)| dt ≤ r − ρ.

Proof of Lemma 3.1. Note first that by (3.5) we have

|u(t)− u(s)| < 2ρ for a < s < t ≤ a+ `. (3.8)

By the hypothesis we have d(u(a+)− ξε(a)) = λ0r ≤ r/4, thus thanks to Corollary 2.3,
the solution ξε to (2.4) can be uniquely extended from [0, a] to a maximal interval [0, tε] .
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We use Hypothesis 1.7 to find x∗ ∈ Z such that |Q(ua−ξεa)−x∗| ≤ Rρ and B3ρ(x
∗) ⊂ Z .

Then, with the notation from (2.16) and using (3.5), we see that the point

z := u(t)− ua + ρS(ξ̇ε(t)) + x∗

is such that |z − x∗| ≤ 2ρ , hence it belongs to Z by Hypothesis 1.7. Consequently, z is
an admissible choice in the variational inequality (2.14) and we obtain〈

ξ̇ε(t), ua − ξε(t)− (ρ+ φε(t))S(ξ̇ε(t))− x∗
〉

+
|ξ̇ε(t)|

2r
|ua − ξε(t)− (ρ+ φε(t))S(ξ̇ε(t))− x∗|2 ≥ 0 (3.9)

for a. e. t ∈ (a, tε). We rewrite (3.9) as(
(ρ+ φε(t))− 1

2r
(ρ+ φε(t))2

)
|ξ̇ε(t)| ≤

(
1− 1

r
(ρ+ φε(t))

)〈
ξ̇ε(t), ua − ξε(t)− x∗

〉
+
|ξ̇ε(t)|

2r
|ua − ξε(t)− x∗|2, (3.10)

or, putting U(t) = |ua − ξε(t)− x∗|2 ,

|ξ̇ε(t)|
(
(ρ+ φε(t))(2r − (ρ+ φε(t)))− U(t)

)
≤ −(r − (ρ+ φε(t)))U̇(t). (3.11)

By (2.15), (3.5) and (3.6) we have

φε(t) ≤ |u(t)− ξε(t)− x∗| ≤ |u(t)− ua|+ |ua − ξε(t)− x∗| ≤ ρ+ U1/2(t), (3.12)

U1/2(a) = |ua − ξεa − x∗| ≤ d(ua − ξεa) + |Q(ua − ξεa)− x∗| ≤ λ0r +Rρ. (3.13)

Considering first Case (i), let us show that U is decreasing. The fact that λ0 ≤ 1
2

√
ρ
r

together with (3.13) and (1.27), yields

ρ(2r − ρ)− U(a) ≥ ρ(2r − ρ)− (λ0r +Rρ)2 ≥ ρ(2r − ρ)−
(

1

2

√
ρr +Rρ

)2

= ρ

(
7

4
r − (R2 + 1)ρ−R√ρr

)
≥ ρr

(
7

4
− R2 + 1

4(R + 6)2
− R

2(R + 6)

)
≥ ρr. (3.14)

The function p 7→ p(2r − p) is increasing in [0, r] , therefore from (3.11) we get

|ξ̇ε(t)|
(
ρ(2r − ρ)− U(t)

)
≤ −(r − (ρ+ φε(t)))U̇(t) for a.e. t ∈ (a, tε). (3.15)

19



By (3.14) there exists sε which is the largest number in (a, tε] such that ρ(2r−ρ)−U(t) >
0 for t ∈ (a, sε). Therefore, using (3.12) and (1.27) we get for t ∈ (a, sε) that

r−(ρ+φε(t)) > r−2ρ−U1/2(t) > r−2ρ−
√
ρ(2r−ρ) ≥ r−2ρ−

√
2r

2(R + 6)
> 0, (3.16)

and (3.15) can be rewritten as

U̇(t)

ρ(2r − ρ)− U(t)
≤ − 1

r − (ρ+ φε(t))
|ξ̇ε(t)| ≤ − 1

r − ρ |ξ̇
ε(t)| ≤ 0, (3.17)

for a.e. t ∈ (a, sε). Hence, U is decreasing in (a, sε), and from (3.14) we infer that

ρ(2r − ρ)− U(t) ≥ ρ(2r − ρ)− U(a) ≥ ρr, (3.18)

which shows that sε = tε . Moreover, we have by (3.12) and (3.13) that

d(u(t)− ξε(t)) = φε(t) ≤ ρ+ U1/2(a) ≤ λ0r + (R + 1)ρ for t ∈ (a, tε], (3.19)

which implies (3.7). In addition, according to Corollary 2.3, we must have tε = a + ` .
Indeed, if tε < a + ` , the inequality above together with condition (i) and (3.8) would
imply

d(u(tε+)− ξε(tε)) ≤ φε(tε) + |u(tε+)− u(tε)| <
1

2

√
ρr + (R + 4)ρ < r,

which contradicts the maximality of tε . Besides, by (3.14), (3.17), and (3.18) we have∫ a+`

a

|ξ̇ε(t)| dt ≤
∫ a+`

a

(ρ− r)U̇(t)

ρ(2r − ρ)− U(t)
dt = (r − ρ) log

(
ρ(2r − ρ)− U(a+ `)

ρ(2r − ρ)− U(a)

)
≤ (r − ρ) log

(
2r − ρ
r

)
≤ (r − ρ) log 2 ≤ r − ρ. (3.20)

which concludes the proof of Case (i).

Before passing to Case (ii), let us check that with the notation (3.2), for θ as in (3.4)
we have

λ∗ :=
1

2

√
ρ

r
> θ > µ∗. (3.21)

Indeed, the fact that µ∗ < θ follows from (3.2). Furthermore, by (1.27) we have that
θ/λ∗ = 2R

√
ρ/r ≤ R/(R + 6) < 1, and (3.21) follows.

Let us now consider Case (ii) and assume that µi > λ0 > λ∗ for some i ∈ N∪{0} . Put
λ1 := (λ0 + θ)2 ∈ (µ∗, µi+1). Since d(ua− ξεa) = λ0r and λ1 < λ0 , there exists necessarily
τε which is the largest number in (a, tε] such that

φε(t) = d(u(t)− ξε(t)) ≥ λ1r for t ∈ (a, τε). (3.22)
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As the function p 7→ p(2r − p) is increasing in [0, r] , the inequality (3.11) yields

|ξ̇ε(t)|
(
φε(t)(2r − φε(t))− U(t)

)
≤ −(r − (ρ+ φε(t)))U̇(t), (3.23)

while (3.22) implies

φε(t)(2r − φε(t)) ≥ r2λ1(2− λ1) for t ∈ (a, τε). (3.24)

From (3.23) it follows that

|ξ̇ε(t)|
(
r2λ1(2− λ1)− U(t)

)
≤ −(r − (ρ+ φε(t)))U̇(t) (3.25)

for a.e. t ∈ (a, τε). Noting that λ1 < λ0 ≤ 1/4, we know by virtue of (3.13) that

U(a) ≤ (λ0r +Rρ)2 = r2(λ0 + θ)2 = r2λ1 < r2λ1(2− λ1). (3.26)

Hence, there exists σε , the largest number in (a, τε] , such that r2λ1(2 − λ1) − U(t) > 0
for t ∈ (a, σε). Therefore, using (3.12), we have for t ∈ (a, σε) that

r − (ρ+ φε(t)) > r − 2ρ− U1/2(t) > r − 2ρ− r
√
λ1(2− λ1) > r − 2ρ− 1√

2
r > 0,

and (3.25) implies U̇(t) < 0 for t ∈ (a, σε). Hence U(t) is decreasing in (a, σε), and it
follows from (3.26) that σε = τε . From (3.25) we then obtain a counterpart of (3.17) in
the form

U̇(t)

r2λ1(2− λ1)− U(t)
≤ − 1

r − ρ |ξ̇
ε(t)| ≤ 0 (3.27)

for a. e. t ∈ (a, τε). Integrating over (a, τε) and using the relation r2λ1(2− λ1)−U(a) ≥
r2λ1(2− λ1)− λ1r2 = r2λ1(1− λ1) we thus get∫ τε

a

|ξ̇ε(t)| dt ≤
∫ τε

a

(ρ− r)U̇(t)

r2λ1(2− λ1)− U(t)
dt = (r − ρ) log

(
r2λ1(2− λ1)− U(τε)

r2λ1(2− λ1)− U(a)

)
≤ (r − ρ) log

(
2− λ1
1− λ1

)
≤ (r − ρ) log

7

3
. (3.28)

We claim that τε < a+ ` . Indeed, assuming that τε = a+ ` , since λ1 > µ∗ (with µ∗
from (3.2)), then the inequality

ε|ξ̇ε(t)| = f(d(u(t)− ξε(t))) ≥ f(λ1r) > f(µ∗r)

holds for a. e. t ∈ (a, a+ `), which together with (3.28) yields

r − ρ ≥
∫ a+`

a

|ξ̇ε(t)| dt > `

ε
f(µ∗r),
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in contradiction with the fact that ε < ε` , with ε` as in (3.3). Furthermore, recalling the
identity (2.2) and using the continuity of f , we can find a constant Cr > 0 independent of
ε such that |ξ̇ε(t)| ≤ Cr/ε in [a, tε). By the choice of τε in (3.22), for any κ > 0, we can
find a continuity point a1 ∈ (τε, τε + κε) of u such that d(u(a1)− ξε(a1)) < λ1r < µi+1r ,
thus (3.28) yields ∫ a1

a

|ξ̇ε(t)| dt ≤ (r − ρ) log
7

3
+ κCr.

Choosing κ > 0 sufficiently small we obtain the assertion (ii).
To conclude the proof, it remains to show that, also in Case (ii), i. e., when λ0 > λ∗ ,

we have tε = a + ` and the inequality (3.7) also holds in (a1, a + `] . Noting that (3.7)
holds true in (a, τε] , it follows that φε(τε) < λ1r + (R + 2)ρ , thus using (3.8) we obtain

d(u(τε+)− ξε(τε)) ≤ φε(τε) + |u(τε+)− u(τε)| <
r

4
+ (R + 4)ρ < r

which ensures in particular that τε < tε (see Corollary 2.3). Choosing a1 sufficiently close
to τε , we may assume that

d(u(a1)− ξε(a1)) < µi+1r, d(u(t)− ξε(t)) < µi+1r + (R + 2)ρ for t ∈ [a, a1]. (3.29)

We now repeat the procedure in the interval [a1, a+ `] . Firstly, note that the values of ξε

in the interval [a1, tε) remain unchanged if we replace u(t) with ū(t) = u(t) for t ≤ a+` ,
ū(t) = u(a+ `) for t ≥ a+ ` , so that

|ū(t)− ū(s)| < 2ρ for a1 < s < t ≤ a1 + `.

In the interval [a1, a + `] , we use Hypothesis 1.7 to find x∗1 ∈ Z such that |Q(u(a1) −
ξε(a1)) − x∗1| ≤ Rρ and B3ρ(x

∗
1) ⊂ Z . We proceed as above and distinguish Case (i)

if λ1 ≤ λ∗ , or Case (ii) if λ∗ < λ1 < µi+1 . In Case (i) we stop the algorithm as we
infer that (3.19) holds and Corollary 2.3 guarantees that tε = a+ ` . In Case (ii) we find
a2 ∈ (a1, a1 + `) such that

d(u(a2)− ξε(a2)) < µi+2r, d(u(t)− ξε(t)) < µi+2r + (R + 2)ρ for t ∈ [a1, a2]

in analogy to (3.29). We continue by induction over i ∈ N , and since by (3.21) we have
µ∗ = limi→∞ µi < λ∗ , after finitely many steps only Case (i) remains, which completes
the proof. �

Lemma 3.1 provides us with the tools to build the solution of the viscous problem by
moving forward with interval steps of length controlled by a fixed number ` . To determine
such a number, we first need to isolate the points where jump discontinuities exceed some
given value. Invoking the definition of the set U∗ in Theorem 2.6, we find a division
0 = t̂0 < t̂1 < · · · < t̂N = T of the interval [0, T ] such that the implication

|u∗(t+)− u∗(t)| ≥ ρ

3
=⇒ ∃ i ∈ {0, . . . , N} : t = t̂i (3.30)
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holds for all t ∈ [0, T ] . Indeed, since u∗ is a left-continuous regulated function, it cannot
have infinitely many jumps of size exceeding ρ/3, see e.g. [16, Proposition 2.4]. We claim
that there exists ˆ̀> 0 such that

∀i ∈ {1, . . . , N} ∀u ∈ U∗ ∀a ∈ [t̂i−1, t̂i) ∀t ∈ (a, a+ ˆ̀]∩ (a, t̂i] : |u(t)−u(a+)| ≤ ρ. (3.31)

Indeed, if (3.31) does not hold, then there exists i ∈ {1, . . . , N} such that

∀n ∈ N ∃un ∈ U∗ ∃sn ∈
(
t̂i−1, t̂i

)
∃tn ∈ (sn, t̂i), tn−sn <

1

n
: |un(tn)−un(sn)| > ρ, (3.32)

hence
|u∗(tn)− u∗(sn)| ≥ |un(tn)− un(sn)| − ρ

2
≥ ρ

2
,

which contradicts the hypothesis (3.30).
We refer again to the sequence µi defined in (3.1) for θ as in (3.4). Recall that its

limit µ∗ is smaller than the critical value 1
2

√
ρ/r by virtue of (3.21). Hence, we find

K ∈ N such that

µkr <
1

2

√
ρr for k ≥ K, (3.33)

and put

` = min

{
ˆ̀,

1

K
(t̂i − t̂i−1), i = 1, . . . , N

}
(3.34)

with ˆ̀ from (3.31). Before we proceed with the analytic proof of Theorem 2.6, it might
be helpful to say a few words about the idea behind it. To benefit from the estimate in
(3.31), on each subinterval [t̂i−1, t̂i] we construct the solution ‘piece by piece’ in intervals
of length at most ` ≤ ˆ̀ by applying Lemma 3.1. For that, one should observe that the
occurrences of Cases (i) and (ii) listed in Lemma 3.1 show a certain pattern classified in
terms of the function

λ∗(t) :=
1

r
d(u(t+)− ξε(t)) (3.35)

which characterizes the distance of u− ξε from the boundary of Z and which has to be
kept between 0 and 1. The strategy is the following, see Figure 1.

1. In each interval [t̂i−1, t̂i] we start with a = t̂i−1 and check whether λ∗(a) ≤ 1
2

√
ρ
r

(Case (i)) or λ∗(a) > 1
2

√
ρ
r

(Case (ii)).

2. If λ∗(a) > 1
2

√
ρ
r

, then by a repeated argument of Case (ii) of Lemma 3.1, we find
a sequence a = a0 < a1 < a2 . . . such that aj − aj−1 < ` and λ∗(aj) < λ∗(aj−1),
and we show that after K steps at most we pull λ∗(t) down below the critical value
1
2

√
ρ
r

. We call this phase of the proof the active regime.
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√
ρr
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0 t

φε

` ` `

Figure 1: Illustration to the proof of Theorem 2.6: Bold lines represent the passive phase.

3. As soon as λ∗(t̄) ≤ 1
2

√
ρ
r

at some point t̄ ∈ [t̂i−1, t̂i − `] , we see that λ∗(t) remains
small in [t̄, t̄ + `] according to Case (i) of Lemma 3.1. We say that we are in the
passive regime.

4. At the point t̄ + ` we have again the alternative λ∗(t̄ + `) ≤ 1
2

√
ρ
r

(Case (i)) or

λ∗(t̄+ `) > 1
2

√
ρ
r

(Case(ii)).

5. In Case (i), we extend the solution as before to the interval [t̄+ `, t̄+ 2`] .

6. In Case (ii), we prove that λ∗(t̄+ `) is ‘not too far’ from the critical value 1
2

√
ρ
r

, so
that after just one iteration of Case (ii) we come back to Case (i) again.

7. Altogether, by definition of ` in (3.34), at most 3K iterations are sufficient for
reaching the endpoint t̂i .

8. We continue the same procedure in the interval [t̂i, t̂i+1] , and after finitely many
steps we prove the existence of a global solution and we get the desired bound for
the variation on the whole interval [0, T ] .

Let us carry out this program in detail.

Proof of Theorem 2.6. With ε0 = ε` as in (3.3) and K as in (3.33), we choose ε < ε`
and an arbitrary u ∈ U∗ . Let 0 = t̂0 < · · · < t̂N = T be a division as in (3.30). We
proceed by induction and fix an arbitrary interval [t̂i−1, t̂i] for i ∈ {1, . . . , N} , assuming
that d(u(t̂i−1+)− ξε(t̂i−1)) ≤ r

4
.

Consider first the case that d(u(t̂i−1+)− ξε(t̂i−1)) = λr with 1
4
≥ λ > 1

2

√
ρ
r

. By Case

(ii) of Lemma 3.1, there exists a1 ∈ (t̂i−1, t̂i−1 + `) such that d(u(a1)− ξε(a1)) = λ1r with
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λ1 ≤ µ1 in terms of the sequence {µi} defined by (3.1). If now λ1 >
1
2

√
ρ
r

, we repeat
the procedure and find a2 ∈ (a1, a1 + `) such that d(u(a2)− ξε(a2)) = λ2r with λ2 ≤ µ2 .
By induction, after m ≤ K steps, we find t̄ = am such that d(u(t̄) − ξε(t̄)) = λmr with
λm ≤ 1

2

√
ρ
r

and finish the active phase.
Starting from the point t̄ , we apply Case (i) of Lemma 3.1 and check that for t ∈

[t̄, t̄+ `] ∩ [t̂i−1, t̂i] we have

d(u(t)− ξε(t)) ≤ λ̄r with λ̄ =
1

2

√
ρ

r
+ (R + 2)

ρ

r
.

If t̄ + ` < t̂i , either λ∗(t̄ + `) ≤ 1
2

√
ρ
r

or we have Case (ii). In both situations we check
that there exist b̄ ∈ [t̄+ `, t̄+ 2`) such that d(u(b̄)− ξε(b̄)) = µ̄r with

µ̄ <
1

r2
(λ̄r +Rρ)2 <

1

2

√
ρ

r
,

meaning that we stay in/return to the passive regime in the interval [b, b+ `] .
Alternating possibly Case (i) and Case (ii) we fill successively the whole interval

[t̂i−1, t̂i] keeping d(u(t) − ξε(t)) far away from the critical value r . The end point t̂i
is either achieved during the passive regime or, in the least favorable case, we have the
situation illustrated in Figure 1. More precisely, we reach a point t∗ at the end of the
passive phase such that t∗ < t̂i < t∗ + ` with λ∗(t∗) ≥ 1

2

√
ρ
r

. Applying Lemma 3.1 in the

interval [t∗, t∗ + `] with u replaced by the truncation ū(t) = u(t) for t ≤ t̂i , ū(t) = u(t̂i)
for t ∈ (t̂i, t

∗ + `] , we guarantee the existence of solution in [t∗, t̂i] , while (3.7) implies

d(u(t̂i)− ξε(t̂i)) ≤ λ∗(t∗)r + (R + 2)ρ ≤ 1

2

√
ρr + 2(R + 2)ρ. (3.36)

where the last inequality follows from the fact t∗ is the end of the passive phase, therefore

λ∗(t∗)r = d(u(t∗)− ξε(t∗)) ≤ 1

2

√
ρr + (R + 2)ρ.

By (2.17) and (3.36) we have

d(u(t̂i+)− ξε(t̂i)) <
r

6
+

1

2

√
ρr + 2(R + 2)ρ = r

(
1

6
+

1

2

√
ρ

r
+ 2(R + 2)

ρ

r

)
< r

(
1

6
+

1

4(R + 6)
+

1

2(R + 6)

)
≤ r

4
,

which allow us to repeat the above procedure in the subsequent subinterval and by in-
duction over i = 1, . . . , N we construct a global solution to (2.2) which, thanks to (3.7),
satisfies

d(u(t)− ξε(t))≤ r

4
+ (R + 2)ρ ≤ r

3
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for all t ∈ [0, T ] .
In each interval [t̂i−1, t̂i] , there are at most K intervals corresponding to the passive

phase, and at most 2K intervals corresponding to the active phase. The total variation
of ξε over each of these intervals is smaller or equal to r − ρ according to Lemma 3.1.
Hence,

Var
[0,T ]

ξε ≤ 3KN(r − ρ)

which completes the proof of Theorem 2.6. �

Let us mention an immediate consequence of Theorem 2.6.

Corollary 3.2. Let Hypothesis 1.7 hold, and let u∗ ∈ U and ξε0 ∈ X be given such that
d(u∗(0+)− ξε0) < (r− ρ)/4 . Assume that {un : n ∈ N} ⊂ GL(0, T ;X) is a sequence such
that

lim
n→∞

|un − u∗|[0,T ] = 0,

and let ξεn be the solutions of (2.2) corresponding to inputs un and initial conditions ξεn(0)
such that d(un(0+) − ξεn(0)) < r/4 for all ε and n . Then there exist ε0 > 0 , n0 ∈ N ,
and a constant V0 > 0 such that

Var
[0,T ]

ξεn ≤ V0 for n ≥ n0 and ε ∈ (0, ε0).

4 Proof of Theorem 2.7

We start with an elementary inequality. Let f be as in (2.2). Then for every v, w ∈ X
we have 〈

f(|v|)
|v| v − f(|w|)

|w| w, v − w
〉
≥ 1

2

(
f(|v|)
|v| +

f(|w|)
|w|

)
|v − w|2 (4.1)

with the convention f(s)
s

= f ′(0+) for s = 0.
Indeed, for |v| > 0, |w| > 0 we have〈

f(|v|)
|v| v − f(|w|)

|w| w, v − w
〉

= |v|f(|v|) + |w|f(|w|)−
(
f(|v|)
|v| +

f(|w|)
|w|

)
〈v, w〉

= |v|f(|v|) + |w|f(|w|) +
1

2

(
f(|v|)
|v| +

f(|w|)
|w|

)
(|v − w|2 − |v|2 − |w|2),

while the convexity of f ensures that

2(|v|f(|v|) + |w|f(|w|))−
(
f(|v|)
|v| +

f(|w|)
|w|

)
(|v|2 + |w|2)

= |v|f(|v|) + |w|f(|w|)− f(|v|)
|v| |w|

2 − f(|w|)
|w| |v|

2

=

(
f(|v|)
|v| −

f(|w|)
|w|

)
(|v|2 − |w|2) ≥ 0
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hence,

|v|f(|v|) + |w|f(|w|)− 1

2

(
f(|v|)
|v| +

f(|w|)
|w|

)
(|v|2 + |w|2) ≥ 0,

and (4.1) follows. The case v = 0 or w = 0 can be obtained from the previous computa-
tion by taking the limit as v or w tends to 0.

We now proceed to the proof of the Hölder type continuity of the solution mapping
u 7→ ξε associated with Problem 2.1.

Proof of Theorem 2.7. Given u1, u2 ∈ U∗ , let ε ∈ (0, ε0) be arbitrarily chosen, with ε0
from Theorem 2.6, and let ξε1, ξ

ε
2 be the solutions of (2.2) corresponding to inputs u1, u2

and initial conditions ξε1(0), ξε2(0). As in (2.14), we can write the following variational
inequalities〈

ξ̇ε1, u1 − ξε1 −
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1 − z1
〉

+
|ξ̇ε1|
2r

∣∣∣∣∣u1 − ξε1 − f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1 − z1
∣∣∣∣∣
2

≥ 0, (4.2)〈
ξ̇ε2, u2 − ξε2 −

f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2 − z2
〉

+
|ξ̇ε2|
2r

∣∣∣∣∣u2 − ξε2 − f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2 − z2
∣∣∣∣∣
2

≥ 0 (4.3)

for all z1, z2 ∈ Z . We choose here in particularz2 = u1 − ξε1 − (f−1(ε|ξ̇ε1|)/|ξ̇ε1|)ξ̇ε1 , z1 =
u2 − ξε2 − (f−1(ε|ξ̇ε2|)/|ξ̇ε2|)ξ̇ε2 . Summing up (4.2)–(4.3) and using the triangle inequality
together with the classical inequality (a+ b)2 ≤ (1 + δ)a2 + (1 + (1/δ))b2 for all a, b, δ > 0
we obtain〈
ξ̇ε2 − ξ̇ε1, ξε2 − ξε1

〉
+

〈
f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2 −
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1, ξ̇
ε
2 − ξ̇ε1

〉

≤
〈
ξ̇ε2 − ξ̇ε1, u2 − u1

〉
+
|ξ̇ε2|+ |ξ̇ε1|

2r

∣∣∣∣∣(u2 − u1)− (ξε2 − ξε1)−
f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2 +
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1

∣∣∣∣∣
2

≤
〈
ξ̇ε2 − ξ̇ε1, u2 − u1

〉
+

(
1 +

1

δ

) |ξ̇ε2|+ |ξ̇ε1|
2r

|(u2 − u1)− (ξε2 − ξε1)|2

+
(1 + δ)(|ξ̇ε2|+ |ξ̇ε1|)

2r

∣∣∣∣∣f−1(ε|ξ̇ε2|)|ξ̇ε2|
ξ̇ε2 −

f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1

∣∣∣∣∣
2

(4.4)

for all δ > 0. We claim that for 0 < δ ≤ 1/2 we have〈
f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2 −
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1, ξ̇
ε
2 − ξ̇ε1

〉

≥ (1 + δ)(|ξ̇ε2|+ |ξ̇ε1|)
2r

∣∣∣∣∣f−1(ε|ξ̇ε2|)|ξ̇ε2|
ξ̇ε2 −

f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1

∣∣∣∣∣
2

(4.5)
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a. e. in (0, T ). In order to prove this claim let us denote

Lε =

〈
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1 −
f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2, ξ̇
ε
1 − ξ̇ε2

〉
, (4.6)

Rε =
|ξ̇ε1|+ |ξ̇ε2|

2r

∣∣∣∣∣f−1(ε|ξ̇ε1|)|ξ̇ε1|
ξ̇ε1 −

f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2

∣∣∣∣∣
2

, (4.7)

and let us check that we are in the situation of (4.1) with

v =
f−1(ε|ξ̇ε1|)
|ξ̇ε1|

ξ̇ε1, w =
f−1(ε|ξ̇ε2|)
|ξ̇ε2|

ξ̇ε2.

Indeed, noting that |v| = f−1(ε|ξ̇ε1|), εξ̇ε1 = f(|v|)
|v| v , |w| = f−1(ε|ξ̇ε2|), εξ̇ε2 = f(|w|)

|w| w , we

can write (4.6) and (4.7) in the form

Lε =
1

ε

〈
f(|v|)
|v| v − f(|w|)

|w| w, v − w
〉
, (4.8)

Rε =
1

2rε
(f(|v|) + f(|w|))|v − w|2. (4.9)

By Theorem 2.6 and recalling (2.15), we know that

|v(t)|+ |w(t)| = f−1(ε|ξ̇ε1(t)|) + f−1(ε|ξ̇ε2(t)|)

= d(u1(t)− ξε1(t)) + d(u2(t)− ξε2(t)) ≤
2r

3

for t ∈ [0, T ] . Hence, using (4.1),

Rε ≤
1

3ε

f(|v|) + f(|w|)
|v|+ |w| |v − w|2 ≤ 1

3ε

(
f(|v|)
|v| +

f(|w|)
|w|

)
|v − w|2 ≤ 2

3
Lε. (4.10)

This shows that (4.5) holds for every 0 < δ ≤ 1/2. Now choosing δ = 1/2 we can reduce
(4.4) to〈
ξ̇ε2 − ξ̇ε1, ξε2 − ξε1

〉
≤
〈
ξ̇ε2 − ξ̇ε1, u2 − u1

〉
+

3

2r
(|ξ̇ε2|+ |ξ̇ε1|) |(u2 − u1)− (ξε2 − ξε1)|2

≤ max

{
1,

3

r

}
(|ξ̇ε2|+ |ξ̇ε1|)

(
|u2 − u1|+ |u2 − u1|2 + |ξε2 − ξε1|2

)
. (4.11)

This is an inequality of the form

ẏ(t) ≤ α(t)y(t) + γ(t), (4.12)
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where α(t) = 2 max{1, r/3}(|ξ̇ε2(t)|+ |ξ̇ε1(t)|), γ(t) = α(t)(|u2(t)−u1(t)|+ |u2(t)−u1(t)|2).
We have α, γ ∈ L1(0, T ). Putting A(t) =

∫ t
0
α(τ) dτ , by Theorem 2.6 we have A(t) ≤

4 max{1, r/3}V0 , and from (4.12) we deduce that

y(t) ≤ eA(t)y(0) +

∫ t

0

eA(t)−A(τ)γ(τ) dτ. (4.13)

In terms of (4.11) this yields

sup
t∈[0,T ]

|ξε2(t)− ξε1(t)|2 ≤ C

(
|ξε2(0)−ξε1(0)|2 + sup

t∈[0,T ]
|u2(t)−u1(t)|+ sup

t∈[0,T ]
|u2(t)−u1(t)|2

)
with a constant C > 0 independent of ε , which we wanted to prove. �

5 Explicit solutions for piecewise constant inputs

Using Lemma 1.5, we can find the solution to (2.2) in closed form in every interval where
the input u is constant. The result reads as follows.

Proposition 5.1. Let 0 ≤ t∗ < t∗ ≤ T be arbitrary, and assume that there exists ū ∈ X
such that u(t) = ū for each t ∈ (t∗, t∗) . Assume furthermore that ξε : [0, t∗] → X
satisfies (2.4) for a.e. t ∈ [0, t∗] . If d(ū− ξε(t∗)) =: d∗ ∈ [0, r) , then the solution ξε can
be extended to [0, t∗] , and for t ∈ [t∗, t∗] we have

ξε(t) =

{
ξε(t∗) if d∗ = 0,

ξε(t∗) + (1− α(t))D(ū− ξε(t∗)) if d∗ > 0,
(5.1)

where α : [t∗, t∗]→ (0,∞) is the solution to the ODE

εα̇(t) +
1

d∗
f(d∗α(t)) = 0, α(t∗) = 1, (5.2)

and the inequality d(u(t)− ξε(t)) ≤ d∗ holds for all t ∈ [t∗, t∗) .

Proof. We directly check that the function ξε defined by (5.1) is a solution to (2.4). The
case d∗ = 0 is trivial. For d∗ > 0 we have

εξ̇ε(t) = −εα̇(t)D(ū− ξε(t∗))

for all t ∈ (t∗, t∗). On the other hand, the function α is decreasing, therefore 0 < α(t) ≤ 1
and we can apply Lemma 1.5 so that

D(ū− ξε(t)) = D(ū− ξε(t∗) + (α(t)− 1)D(ū− ξε(t∗))) = α(t)D(ū− ξε(t∗)). (5.3)

Hence, d(ū− ξε(t)) = d∗α(t) for all t ∈ (t∗, t∗), and (2.2) follows from (5.2). �
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Corollary 5.2. Let u ∈ GL(0, T ;X) be a step function of the form

u(t) = u0χ{0}(t) +
m∑
j=1

ujχ(tj−1,tj ](t) (5.4)

corresponding to a division 0 = t0 < · · · < tm = T of [0, T ] , where χS denotes the
characteristic function of a set S ⊂ [0, T ] , that is, χS(t) = 1 if t ∈ S , χS(t) = 0 if
t /∈ S . Assume that the given elements u0, u1, . . . um from X satisfy the condition

r∗ := max{|uj − uj−1|; j = 1, . . . ,m} < r. (5.5)

Let the initial condition ξε0 be such that d(u0 − ξε0) = 0 . Then there exists ε0 > 0
such that for every ε ∈ (0, ε0) the global solution of ξε ∈ W 1,∞(0, T ;X) to Problem 2.1
exists, and in each interval [tj−1, tj] is given by a formula of the form (5.1). Moreover,
d(u(t)− ξε(t)) ≤ (r + r∗)/2 for all t ∈ [0, T ] .

Proof. The statement will follow from Proposition 5.1 by an induction argument over
j = 1, . . . ,m . We first check that

d1 := d(u1 − ξε(0)) ≤ |(u1 − ξε(0))− (u0 − ξε(0))| = |u1 − u0| ≤ r∗, (5.6)

where we have used the hypothesis that u0 − ξε(0) ∈ Z . Furthermore, as induction step,
assume that for some j = 1, . . . ,m− 1 the solution is available on [0, tj−1] and

dj := d(uj − ξε(tj−1)) ≤
r + r∗

2
. (5.7)

Then the solution can be extended to [0, tj] according to Proposition 5.1 by the formula

ξε(t) =

{
ξε(tj−1) if dj = 0,

ξε(tj−1) + (1− αj(t))D(uj − ξε(tj−1)) if dj > 0,
(5.8)

where the function αj : [tj−1, tj] → (0,∞) is defined as the solution to the differential
equation as a counterpart to (5.2)

εα̇j(t) +
1

dj
f(djαj(t)) = 0, αj(tj−1) = 1, (5.9)

and by Proposition 5.1 we have |D(u(t)− ξε(t))| ≤ dj for all t ∈ [tj−1, tj).
The induction step will be complete if we prove that

d(uj+1 − ξε(tj)) ≤
r + r∗

2
. (5.10)
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holds provided ε is sufficiently small. We argue as in (5.6) in the case dj = 0. For dj > 0
we have by (5.9) that∫ dj

djαj(tj)

ds

f(s)
= −

∫ tj

tj−1

djα̇j(t)

f(djαj(t))
dt =

1

ε
(tj − tj−1). (5.11)

For σ ∈ (0, r] put

F̂ (σ) =

∫ r

σ

ds

f(s)
. (5.12)

Then F̂ is decreasing in (0, r] , F̂ (r) = 0, and, since f is convex, F̂ (0+) = +∞ . Put

F̂ ∗ = F̂

(
r − r∗

2

)
, ε0 =

1

F̂ ∗
min

j=1,...,m
(tj − tj−1). (5.13)

By virtue of (5.11) we have for ε < ε0 that

F̂ (djαj(tj)) =
1

ε
(tj − tj−1) + F̂ (dj) > F̂ ∗, (5.14)

hence djαj(tj) < (r − r∗)/2. From (5.3) it follows that

d(uj − ξε(tj)) = α(tj)d(uj − ξε(tj−1)) = α(tj)dj <
r − r∗

2
. (5.15)

Let zj ∈ Z be such that |uj − ξε(tj)− zj| = d(uj − ξε(tj)). Then

d(uj+1−ξε(tj)) ≤ |uj+1−ξε(tj)−zj| ≤ |uj−ξε(tj)−zj|+|uj+1−uj| <
r − r∗

2
+r∗ =

r + r∗

2
,

so that (5.10) holds and the induction step is complete. �

6 Proof of Theorem 2.8

In [24], we have proved the existence of a unique solution to (0.4) in the case that the
input u is right-continuous. The conversion of the result to left-continuous inputs is easy.
Consider u ∈ GL(0, T ;X) and an initial condition x0 ∈ Z . We look for ξ ∈ BVL(0, T ;X)
such that∫ T

0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉+
1

2r

∫ T

0

|u(t+)− ξ(t+)− z(t)|2 dV (ξ(t)) ≥ 0 (6.1)

for all z ∈ G(0, T ;Z), ξ(0) = u(0)− x0 . To this end consider the function

ū(t) = u(t+) for t ∈ [0, T ],
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with the convention that u(T+) = u(T ). Then ū is right-continuous, and by [24, Theorem
4.2] there exists a unique ξ̄ ∈ BVR(0, T ;X) such that∫ T

0

〈
ū(t)− ξ̄(t)− z(t), dξ̄(t)

〉
+

1

2r

∫ T

0

|ū(t)− ξ̄(t)− z(t)|2 dV (ξ̄(t)) ≥ 0 (6.2)

for all z ∈ G(0, T ;Z), ξ̄(0) = ū(0)− x̄0 , where

x̄0 = Q(x0 + ū(0)− u(0)). (6.3)

We claim that ξ can be constructed as follows

Lemma 6.1. The variational inequality (6.1) is satisfied for

ξ(t) =

{
ξ̄(t−) for t ∈ (0, T ],
u(0)− x0 for t = 0.

(6.4)

The proof relies on the following elementary result.

Lemma 6.2. Let v ∈ G(0, T ;X) and w ∈ BV (0, T ;X) be given such that the set A =
{t ∈ [0, T ] : w(t) 6= 0} is countable. Then∫ T

0

〈v(t), dw(t)〉 = 〈v(T ), w(T )〉 − 〈v(0), w(0)〉 .

This is indeed obvious if the set A is finite. The general case is obtained by passing
to the limit following the same argument used in the proof of [26, Lemma 6.3.16], whose
result concerns the case of real-valued functions.

Proof of Lemma 6.1. We have by definition that u(t+) = ū(t), ξ(t+) = ξ̄(t) for all
t ∈ [0, T ). Besides, noting that ū(T−) = ū(T ), it follows that ξ̄ as well as V (ξ̄) are
left-continuous in T (see [24, Lemma 5.1]). Let A be the countable set of all t ∈ [0, T ]
such that ξ(t) 6= ξ̄(t). For all t /∈ A (i.e. if ξ(t) = ξ̄(t)) we also have

V (ξ)(t) = V̄ (ξ̄)(t),

where V̄ (ξ̄)(t) = V (ξ̄)(t) + |ξ̄(0)− ξ(0)| . It follows from (6.2) that∫ T

0

〈
ū(t)− ξ̄(t)− z(t), dξ̄(t)

〉
+

1

2r

∫ T

0

|ū(t)− ξ̄(t)− z(t)|2 dV̄ (ξ̄)(t) ≥ 0 (6.5)

for all z ∈ G(0, T ;Z). Hence, using (6.5) and Lemma 6.2 we obtain for any arbitrary
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function z ∈ G(0, T ;Z) that∫ T

0

〈u(t+)− ξ(t+)− z(t), dξ(t)〉+
1

2r

∫ T

0

|u(t+)− ξ(t+)− z(t)|2 dV (ξ(t))

=

∫ T

0

〈
ū(t)− ξ̄(t)− z(t), dξ(t)

〉
+

1

2r

∫ T

0

|ū(t)− ξ̄(t)− z(t)|2 dV (ξ)(t)

≥
∫ T

0

〈
ū(t)− ξ̄(t)− z(t), d(ξ − ξ̄)(t)

〉
+

1

2r

∫ T

0

|ū(t)− ξ̄(t)− z(t)|2 d(V (ξ)− V̄ (ξ̄))(t)

= −
〈
ū(0)− ξ̄(0)− z(0), (ξ − ξ̄)(0)

〉
− |ū(0)− 1

2r
ξ̄(0)− z(0)|2(V (ξ)− V̄ (ξ̄))(0),

=
〈
ū(0)− ξ̄(0)− z(0), ξ̄(0)− ξ(0)

〉
+

1

2r
|ū(0)− ξ̄(0)− z(0)|2|ξ̄(0)− ξ(0)|, (6.6)

where we have used the fact that ξ(T ) = ξ̄(T ), V (ξ)(T ) = V̄ (ξ̄)(T ).
By definition (6.3) of x̄0 we have

〈x0 − x̄0 + ū(0)− u(0), x̄0 − z〉+
1

2r
|x̄0 − z|2|x0 − x̄0 + ū(0)− u(0)| ≥ 0

for all z ∈ Z , while by construction x̄0− z = ū(0)− ξ̄(0)− z and x0− x̄0 + ū(0)−u(0) =
ξ̄(0)− ξ(0). We thus conclude from (6.6) that (6.1) holds, and Lemma 6.1 is proved. �

In Corollary 5.2 we have derived an explicit formula for the solution of (2.2) if the input
u is a left-continuous step function. Likewise, for such particular inputs, the solution of
the Kurzweil variational inequality (6.1) is again described by step function which can be
constructed via an iterative process as the one presented in [24]; a type of catching up
algorithm. These are the ingredients of the proof of the following result.

Lemma 6.3. Let the hypotheses of Corollary 5.2 hold, and let u(t) be a step function
given by (5.4) for t ∈ [0, T ] . Given x0 ∈ Z , put ξ0 = u0 − x0 and let ξε0 ∈ X for ε > 0
be such that ξε0 → ξ0 as ε → 0 . If ξε ∈ W 1,∞(0, T ;X) is the unique solution of (2.2)
such that ξε(0) = ξε0 , then

lim
ε→0

ξε(t) = ξ(t) ∀t ∈ [0, T ].

where ξ ∈ BVL(0, T ;X) is the solution of (6.1) given by

ξ(t) = ξ0χ{0}(t) +
m∑
j=1

ξjχ(tj−1,tj ](t) (6.7)

with ξ0 = u0 − x0 , and

ξj = ξj−1 +D(uj − ξj−1) for j = 1, . . . ,m. (6.8)
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Proof. Let ω > 0 be given. We claim that for every t ∈ [0, T ] there exists ε̄(t) > 0 such
that

|ξε(t)− ξ(t)| < ω for ε < ε̄(t). (6.9)

The statement is obvious for t = 0. In order to prove it in (0, T ] , firstly observe that
according to Corollary 5.2, on each subinterval (tj−1, tj] the function ξε is given by (5.8).
Therefore, with the notation from (5.7), for t ∈ (tj−1, tj] we have

|ξε(t)− ξ(t)| ≤ |ξε(tj−1)− ξ(tj−1)|+ |D(uj− ξε(tj−1))−D(uj− ξ(tj−1))|+djαj(t), (6.10)

where αj is the function satisfying (5.9). By Corollary 5.2 we know that d(uj−ξε(tj−1)) ≤
(r + r∗)/2. For j = 1, we get

d(u1 − ξ(t0)) ≤ |u1 − ξ0 − x0| = |u1 − u0| ≤ r∗,

while for j ≥ 2, the identity (6.8) gives ξj−1 = uj−1 −Q(uj−1 − ξj−2) and we get

d(uj − ξ(tj−1)) ≤ |uj − ξj−1 −Q(uj−1 − ξj−2)| = |uj − uj−1| ≤ r∗.

where the last inequality holds thanks to (5.5). In either case, we have d(uj − ξ(tj−1)) ≤
r∗ < (r + r∗)/2. Applying Lemma 1.4 we thus obtain

|D(uj − ξε(tj−1))−D(uj − ξ(tj−1))| ≤ K|ξε(tj−1)− ξ(tj−1)|

with K = 1 +
√

3/κ , κ =
√

2r
r+r∗
− 1; consequently, we deduce from (6.10) the following

estimate for the solutions ξε and ξ

|ξε(t)− ξ(t)| ≤ (1 +K)|ξε(tj−1)− ξ(tj−1)|+ djαj(t) for t ∈ (tj−1, tj]. (6.11)

Let us fix an arbitrary t∗ ∈ (tk−1, tk] for some k ∈ {1, . . . ,m} , and prove the existence
of ε̄(t∗) > 0 so that (6.9) holds. Put

τ ∗ = min{t∗ − tk−1,min{tj − tj−1 : j = 1, . . . , k − 1}}. (6.12)

Considering F̂ as in (5.12), for each j ∈ {1, . . . , k} such that dj > 0 we have F̂ (dj) > 0
and similarly as in (5.11) and (5.14) we infer that

F̂ (djαj(t)) >
1

ε
(t− tj−1) for t ∈ (tj−1, tj]

This together with the definition of τ ∗ thus ensures that

djα(tj) ≤ F̂−1
(
τ ∗

ε

)
, dkαk(t

∗) ≤ F̂−1
(
τ ∗

ε

)
.
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Finally, we conclude from (6.11) that

|ξε(t∗)− ξ(t∗)| ≤ (1 +K)m|ξε0 − ξ0|+
(1 +K)m

K
F̂−1

(
τ ∗

ε

)
, (6.13)

and (6.9) follows. �

We now are ready to prove that, for regulated inputs, the limit of the solutions ξε to
(2.2), as ε→ 0, satisfies the variational inequality (6.1).

Proof of Theorem 2.8. Consider an arbitrary u ∈ U . We find a sequence {un : n ∈ N}
of step functions such that |un − u|[0,T ] → 0 as n → ∞ , un(0) = u(0). By Theorem 2.6
and Corollary 3.2 for u∗ = u , there exist ε0 > 0 and n0 ∈ N such that for ε ∈ (0, ε0)
and n ≥ n0 , the Problem 2.1 corresponding to inputs u and un has a solution which we
denote by ξε and ξεn , respectively (with ξε(0) = ξεn(0) = ξε0 ). Moreover, we can find a
constant V0 independent of n such that

Var
[0,T ]

ξεn ≤ V0, Var
[0,T ]

ξε ≤ V0 for ε ∈ (0, ε0). (6.14)

Let ξ and ξn be the solutions to (0.4) associated with the inputs u and un , respectively.
Given ω > 0, by Theorem 2.7 we find n1 ∈ N , n1 > n0 , such that

|ξεn − ξε|[0,T ] ≤
ω

4
for n ≥ n1, ε ∈ (0, ε0). (6.15)

Similarly, by [24, Theorem 4.5], we can find n2 ∈ N , n2 > n0 , such that

|ξn − ξ|[0,T ] ≤
ω

4
for n ≥ n2. (6.16)

The convergence ξε(t) → ξ(t) is obvious for t = 0. Let now t ∈ (0, T ] be arbitrary. For
ε ∈ (0, ε0) and n = max{n1, n2} we have

|ξε(t)− ξ(t)| ≤ |ξε(t)− ξεn(t)|+ |ξεn(t)− ξn(t)|+ |ξn(t)− ξ(t)| ≤ ω

2
+ |ξεn(t)− ξn(t)|.

We refer to Lemma 6.3 and find ε = ε(t) > 0 sufficiently small such that |ξεn(t)− ξn(t)| <
ω/2. Since ω > 0 is arbitrary, we obtain the assertion. �

7 Proof of Theorem 2.9

Let us start with the following variant of the Young inequality.

Lemma 7.1. Let h : R+ → R+ be a concave strictly increasing function, h(0) = 0 , and
let H(x) =

∫ x
0
h(s) ds . Then for all positive numbers x, y, σ we have

xh(y) ≤ σ
(
H(y) +H

(x
σ

))
. (7.1)

35



Proof. It is enough to prove that (7.1) holds for continuously differentiable functions h .
The general case is then obtained by approximating the function h uniformly by smooth
concave increasing functions and passing to the limit.

Put β(s) = σs(h−1)′(s) for s ≥ 0. The function h−1 is convex, hence β is increasing.
From the classical Young inequality it follows that

xh(y) ≤
∫ x

0

β−1(s) ds+

∫ h(y)

0

β(s) ds.

By convexity of h−1 we have β(z) ≥ σh−1(z) for all z ≥ 0, hence β−1(s) ≤ h(s/σ) for
all s ≥ 0, which yields ∫ x

0

β−1(s) ds ≤
∫ x

0

h
( s
σ

)
ds = σH

(x
σ

)
.

In the second integral we substitute s = h(z) and obtain∫ h(y)

0

β(s) ds = σ

∫ h(y)

0

s(h−1)′(s) ds = σ

∫ y

0

h(z)(h−1)′(h(z))h′(z) dz = σH(y),

which completes the proof. �

Proof of Theorem 2.9. Let u ∈ C([0, T ];X) be given. We choose a sequence {un : n ∈
N} ⊂ W 1,2(0, T ;X) such that

lim
n→∞

|un − u|[0,T ] = 0.

By [24, Corollary 5.3], for n ∈ N the solution ξn to (0.4) associated with un with initial
condition ξn(0) = un(0) − x0 belongs to W 1,2(0, T ;X) and satisfies almost everywhere
the variational inequality

un − ξn ∈ Z,
〈
ξ̇n, un − ξn − z

〉
+
|ξ̇n|
2r
|un − ξn − z|2 ≥ 0 a. e. (7.2)

for every z ∈ Z . Applying Theorem 2.6 and Corollary 3.2 for u∗ = u , we know that the
solution ξε to the Problem 2.1 with inputs un and initial conditions ξεn(0) = un(0) − x0
exists for ε ∈ (0, ε0) and n ≥ n0 . Besides, it satisfies〈

ξ̇εn, un − ξεn −
f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn − z
〉

+
|ξ̇εn|
2r

∣∣∣∣∣un − ξεn − f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn − z
∣∣∣∣∣
2

≥ 0 (7.3)

for every z ∈ Z . Choosing in (7.2) z = un(t± s)− ξn(t± s) for s > 0, dividing by s and
letting s tend to 0 we see that the quadratic term vanishes in the limit, and we get〈

ξ̇n(t), u̇n(t)− ξ̇n(t)
〉

= 0, hence |ξ̇n(t)| ≤ |u̇n(t)| (7.4)
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for a. e. t ∈ (0, T ). Moreover, putting z = ξn − un in (7.3), z = un − ξεn − f−1(ε| ˙ξεn|)
| ˙ξεn|

ξ̇εn in

(7.2), summing the inequalities up we get〈
f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn, ξ̇
ε
n − ξ̇n

〉
+
〈
ξ̇εn − ξ̇n, ξεn − ξn

〉
≤ |ξ̇

ε
n|+ |ξ̇n|

2r

∣∣∣∣∣ξεn − ξn +
f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn

∣∣∣∣∣
2

,

wherefrom the classical inequality (a+ b)2 ≤ (1+δ)a2 +(1+(1/δ))b2 for a, b, δ > 0 yields〈
f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn, ξ̇
ε
n − ξ̇n

〉
+
〈
ξ̇εn − ξ̇n, ξεn − ξn

〉
≤
(

1 +
1

δ

) |ξ̇εn|+ |ξ̇n|
2r

|ξεn − ξn|2 +
(1 + δ)(|ξ̇εn|+ |ξ̇n|)

2r

(
f−1(ε|ξ̇εn|)

)2
. (7.5)

We define functions H : [0,∞)→ R and Ĥ : X → R by the formula

H(x) =

∫ x

0

f−1(s) ds for x ≥ 0, Ĥ(v) = H(|v|) for v ∈ X.

Both H and Ĥ are convex in their respective domains of definition. Hence,

Ĥ(v)− Ĥ(w) ≤
〈
∇Ĥ(v), v − w

〉
=

〈
f−1(|v|)
|v| v, v − w

〉
for all v, w ∈ X . In particular, by the convexity argument, the first term on the left-hand
side of (7.5) can be estimated from below as follows:〈

f−1(ε|ξ̇εn|)
|ξ̇εn|

ξ̇εn, ξ̇
ε
n − ξ̇n

〉
≥ 1

ε

(
H(ε|ξ̇εn|)−H(ε|ξ̇n|)

)
(7.6)

The last term on the right-hand side of (7.5) has to be estimated from above. By virtue
of Theorem 2.6 and recalling (2.15) we have

f−1(ε|ξ̇εn(t)|) = d(u(t)− ξεn(t)) ≤ r

3
. (7.7)

Then

(1 + δ)|ξ̇εn|
2r

(
f−1(ε|ξ̇εn|)

)2
≤ (1 + δ)|ξ̇εn|

6
f−1(ε|ξ̇εn|) =

(1 + δ)

6ε
ε|ξ̇εn|f−1(ε|ξ̇εn|). (7.8)

37



By Lemma 7.1 with h = f−1 , x = y , and σ = 1 we have xf−1(x) ≤ 2H(x), hence

(1 + δ)

6ε
ε|ξ̇εn|f−1(ε|ξ̇εn|) ≤

1 + δ

3ε
H(ε|ξ̇εn|). (7.9)

Using (7.7) again, similarly we derive the following estimate

(1 + δ)|ξ̇n|
2r

(
f−1(ε|ξ̇εn|)

)2
≤ (1 + δ)

6ε
ε|ξ̇n|f−1(ε|ξ̇εn|). (7.10)

We are now again in the situation of Lemma 7.1 with h = f−1 , σ = δ , x = ε|ξ̇n| , and
y = ε|ξ̇εn| , which together with (7.4) yields that

(1 + δ)

6ε
ε|ξ̇n|f−1(ε|ξ̇εn|) ≤

δ(1 + δ)

6ε

(
H(ε|ξ̇εn|) +H

(
ε|u̇n|
δ

))
. (7.11)

Choosing δ = 1 we obtain
1 + δ

3
+
δ(1 + δ)

6
= 1,

hence, by combining (7.6) and (7.8)–(7.11) with the inequality (7.5) we get

1

ε

(
H(ε|ξ̇εn|)−H(ε|ξ̇n|)

)
+

1

2

d

dt
|ξεn − ξn|2

≤ 1

r
(|ξ̇εn|+ |ξ̇n|) |ξεn − ξn|2 +

1

ε
H(ε|ξ̇εn|) +

1

3ε
H(ε|u̇n|)

which can be reduced using also (7.4) to

d

dt
|ξεn − ξn|2 ≤ C̃

(
(|ξ̇εn|+ |u̇n|) |ξεn − ξn|2 +

1

ε
H (ε|u̇n|)

)
(7.12)

with a constant C̃ independent of ε and n . This is an inequality of the form (4.12) with

α(t) = C̃(|ξ̇εn(t)| + |u̇n(t)|), and γ(t) = C̃
ε
H (ε|u̇n(t)|). By construction ξεn(0) = ξn(0),

thus the Gronwall inequality (4.13) gives

sup
t∈[0,T ]

|ξεn(t)− ξn(t)|2 ≤ Cn
1

ε

∫ T

0

H (ε|u̇n(t)|) dt, (7.13)

where Cn = C̃2(V0 + Var[0,T ] un) ≥ C̃ exp
(∫ T

0
α(t) dt

)
, with constant V0 > 0 from

Theorem 2.8.
The assertion of Theorem 2.9 now follows from the triangle inequality. We have indeed

|ξε − ξ|[0,T ] ≤ |ξε − ξεn|[0,T ] + |ξεn − ξn|[0,T ] + |ξn − ξ|[0,T ].
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Hence by Theorem 2.7 and (7.13) we obtain

|ξε − ξ|[0,T ] ≤ L̃

(
|ξε(0)− ξεn(0)|+ |u− un|1/2[0,T ] + |u− un|[0,T ]

)

+

(
Cn
ε

∫ T

0

H (ε|u̇n(t)|) dt

)1/2

+ |ξn − ξ|[0,T ]. (7.14)

Recalling the value of the initial conditions, note that

|ξε(0)− ξεn(0)| ≤ |ξε(0)− ξ(0)|+ |ξ(0)− ξεn(0)| = |ξε0 − ξ0|+ |u(0)− un(0)|,

and consequently (7.14) becomes

|ξε − ξ|[0,T ] ≤ |ξn − ξ|[0,T ] + L̃

(
|u(0)− un(0)|+ |u− un|1/2[0,T ] + |u− un|[0,T ]

)

+ L̃|ξε0 − ξ0|+
(
Cn
ε

∫ T

0

H (ε|u̇n(t)|) dt

)1/2

(7.15)

Let κ > 0 be arbitrarily small. By [24, Theorem 4.5], the functions ξn converge uniformly
to ξ . We thus can choose n0 ∈ N such that

|ξn − ξ|[0,T ] + |un − u|1/2[0,T ] + 2|un − u|[0,T ] <
κ

2(L̃+ 1)
for n ≥ n0 (7.16)

To estimate the integral term, we first notice that H is a convex function, hence,
H(s) ≤ sf−1(s) for s ≥ 0, so that

1

ε

∫ T

0

H (ε|u̇n(t)|) dt ≤
∫ T

0

|u̇n(t)|f−1 (ε|u̇n(t)|) dt. (7.17)

Denoting β1 := Var[0,T ] un0 and β2 :=
∫ T
0
|u̇n0(t)|2 dt , we find γ > 0 such that

s ∈ [0, γ] =⇒ f−1(s) ≤ κ2

32Cn0(β1 + 1),

and define the sets

Aε(γ) =
{
t ∈ (0, T ) : |u̇n0(t)| >

γ

ε

}
, Bε(γ) = (0, T ) \ Aε(γ).

In view of this, we get∫
Bε(γ)

|u̇n0(t)|f−1 (ε|u̇n0(t)|) dt ≤ κ2

32Cn0(β1 + 1)

∫ T

0

|u̇n0(t)| dt ≤
κ2

32Cn0

(7.18)
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On the other hand, since f−1 is concave, there exists a constant C∗ > 0 such that
f−1(s) ≤ C∗(1 + s) for all s ≥ 0. Therefore∫

Aε(γ)

|u̇n0(t)|f−1 (ε|u̇n0(t)|) dt ≤ C∗
∫
Aε(γ)

|u̇n0(t)| dt+ εC∗
∫
Aε(γ)

|u̇n0(t)|2 dt

≤ C∗
ε

γ

∫
Aε(γ)

|u̇n0(t)|2 dt+ εC∗β2

that is, ∫
Aε(γ)

|u̇n0(t)|f−1 (ε|u̇n0(t)|) dt ≤ εC∗β2

(
1

γ
+ 1

)
. (7.19)

From (7.17)–(7.18) we thus conclude that

Cn0

ε

∫ T

0

H (ε|u̇n0(t)|) dt ≤ Cn0εβ2C
∗ (1 + γ)

γ
+
κ2

32

We can therefore choose ε1 > 0 sufficiently small such that

L̃|ξε0 − ξ0|+
(
Cn0

ε

∫ T

0

H (ε|u̇n(t)|) dt

)1/2

≤ κ

2
for ε ∈ (0, ε1). (7.20)

Using (7.15), (7.16), and (7.20) we see that |ξε−ξ|[0,T ] < κ for ε ∈ (0, ε1). The parameter
κ can be chosen arbitrarily small, and Theorem 2.9 is thus proved. �
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