We propose FedDrive v2, an extension of the Federated Learning benchmark for Semantic Segmentation in Autonomous Driving. While the first version aims at studying the effect of domain shift of the visual features across clients, in this work, we focus on the distribution skewness of the labels. We propose six new federated scenarios to investigate how label skewness affects the performance of segmentation models and compare it with the effect of domain shift. Finally, we study the impact of using the domain information during testing.

FedDrive v2: an Analysis of the Impact of Label Skewness in Federated Semantic Segmentation for Autonomous Driving / Fani', Eros; Ciccone, Marco; Caputo, Barbara. - ELETTRONICO. - 1:(In corso di stampa), pp. 1-4. (Intervento presentato al convegno Italian Institute of Robotics and Intelligent Machines (2023 I-RIM Conference) tenutosi a Roma nel 20-22 ottobre 2023).

FedDrive v2: an Analysis of the Impact of Label Skewness in Federated Semantic Segmentation for Autonomous Driving

Eros Fani';Marco Ciccone;Barbara Caputo
In corso di stampa

Abstract

We propose FedDrive v2, an extension of the Federated Learning benchmark for Semantic Segmentation in Autonomous Driving. While the first version aims at studying the effect of domain shift of the visual features across clients, in this work, we focus on the distribution skewness of the labels. We propose six new federated scenarios to investigate how label skewness affects the performance of segmentation models and compare it with the effect of domain shift. Finally, we study the impact of using the domain information during testing.
In corso di stampa
File in questo prodotto:
File Dimensione Formato  
2309.13336.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 262.52 kB
Formato Adobe PDF
262.52 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982523