In this work we propose a novel method to evaluate the quality of enhanced videos. Perceived quality of a video depends on both technical aspects, such as the presence of distortions like noise and blur, and non-technical factors, such as content preference and recommendation. Our approach involves the use of three deep learning based models that encode video sequences in terms of their overall technical quality, quality-related attributes, and aesthetic quality. The resulting feature vectors are adaptively combined and used as input to a Support Vector Regressor to estimate the video quality score. Quantitative results on the recently released VQA Dataset for Perceptual Video Enhancement (VDPVE) introduced for the NTIRE 2023 Quality Assessment of Video Enhancement Challenge demonstrates the effectiveness of the proposed method.
Quality assessment of enhanced videos guided by aesthetics and technical quality attributes / Agarla, Mirko; Celona, Luigi; Rota, Claudio; Schettini, Raimondo. - (2023), pp. 1533-1541. (Intervento presentato al convegno Conference on Computer Vision and Pattern Recognition tenutosi a Vancouver, BC (CAN) nel 17-24 June 2023) [10.1109/CVPRW59228.2023.00156].
Quality assessment of enhanced videos guided by aesthetics and technical quality attributes
Mirko Agarla;
2023
Abstract
In this work we propose a novel method to evaluate the quality of enhanced videos. Perceived quality of a video depends on both technical aspects, such as the presence of distortions like noise and blur, and non-technical factors, such as content preference and recommendation. Our approach involves the use of three deep learning based models that encode video sequences in terms of their overall technical quality, quality-related attributes, and aesthetic quality. The resulting feature vectors are adaptively combined and used as input to a Support Vector Regressor to estimate the video quality score. Quantitative results on the recently released VQA Dataset for Perceptual Video Enhancement (VDPVE) introduced for the NTIRE 2023 Quality Assessment of Video Enhancement Challenge demonstrates the effectiveness of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
Agarla_Quality_Assessment_of_Enhanced_Videos_Guided_by_Aesthetics_and_Technical_CVPRW_2023_paper.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
Quality_assessment_of_enhanced_videos_guided_by_aesthetics_and_technical_quality_attributes.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982307