Glide-symmetric structures can improve properties of periodic structures for a wide variety of applications, such as lenses, filters and gap waveguides. Therefore, fast and accurate tools are needed to facilitate their use. In this work, we present a modelling approach based on a method of moments with a novel Green's function. The solutions are found as singularities of the impedance matrix. The results are shown to be in good agreement with a well-established method.

An Integral-Equation Kernel for Glide Symmetric Structures / Petek, M.; Rivero, Javier; Tobon Vasquez, J. A.; Valerio, G.; Quevedo-Teruel, O.; Vipiana, F.. - ELETTRONICO. - (2023), pp. 555-556. (Intervento presentato al convegno 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI) tenutosi a Portland, OR, USA nel 23-28 July 2023) [10.1109/USNC-URSI52151.2023.10237483].

An Integral-Equation Kernel for Glide Symmetric Structures

Petek, M.;Rivero, Javier;Tobon Vasquez, J. A.;Vipiana, F.
2023

Abstract

Glide-symmetric structures can improve properties of periodic structures for a wide variety of applications, such as lenses, filters and gap waveguides. Therefore, fast and accurate tools are needed to facilitate their use. In this work, we present a modelling approach based on a method of moments with a novel Green's function. The solutions are found as singularities of the impedance matrix. The results are shown to be in good agreement with a well-established method.
2023
978-1-6654-4228-2
File in questo prodotto:
File Dimensione Formato  
An_Integral-Equation_Kernel_for_Glide_Symmetric_Structures.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 423.12 kB
Formato Adobe PDF
423.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AP_S_2023_Method_of_moment_modelling_shorter.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 363.56 kB
Formato Adobe PDF
363.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982302