The analysis of RNA data plays a crucial role in understanding cellular differentiation. One widely-used methodology for analyzing RNA data is scVelo. However, in this paper, we show that, among other issues of scVelo, the current model formalization suffers from identifiability problems. We propose a Bayesian version of scVelo with modifications that address these issues.
Analyzing RNA data with scVelo: identifiability issues and a Bayesian implementation / Sabbioni, Elena; Bibbona, Enrico; Mastrantonio, Gianluca; Sanguinetti, Guido. - ELETTRONICO. - (2023), pp. 538-543. (Intervento presentato al convegno SIS 2023 - Statistical Learning, Sustainability and Impact Evaluation tenutosi a Ancona (ITA) nel 21/06/2023-23/06/2023).
Analyzing RNA data with scVelo: identifiability issues and a Bayesian implementation
Sabbioni,Elena;Bibbona,Enrico;Mastrantonio Gianluca;
2023
Abstract
The analysis of RNA data plays a crucial role in understanding cellular differentiation. One widely-used methodology for analyzing RNA data is scVelo. However, in this paper, we show that, among other issues of scVelo, the current model formalization suffers from identifiability problems. We propose a Bayesian version of scVelo with modifications that address these issues.File | Dimensione | Formato | |
---|---|---|---|
shortPaperSIS2023_Reviewed.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982276