This paper presents a novel approach for incremental semiparametric inverse dynamics learning. In particular, we consider the mixture of two approaches: Parametric modeling based on rigid body dynamics equations and nonparametric modeling based on incremental kernel methods, with no prior information on the mechanical properties of the system. The result is an incremental semiparametric approach, leveraging the advantages of both the parametric and nonparametric models. We validate the proposed technique learning the dynamics of one arm of the iCub humanoid robot.
Incremental semiparametric inverse dynamics learning / Camoriano, R; Traversaro, S; Rosasco, L; Metta, G; Nori, F. - ELETTRONICO. - (2016), pp. 544-550. (Intervento presentato al convegno 2016 IEEE International Conference on Robotics and Automation (ICRA) tenutosi a Stockholm, Sweden nel May 16-21, 2016) [10.1109/ICRA.2016.7487177].
Incremental semiparametric inverse dynamics learning
Camoriano R;
2016
Abstract
This paper presents a novel approach for incremental semiparametric inverse dynamics learning. In particular, we consider the mixture of two approaches: Parametric modeling based on rigid body dynamics equations and nonparametric modeling based on incremental kernel methods, with no prior information on the mechanical properties of the system. The result is an incremental semiparametric approach, leveraging the advantages of both the parametric and nonparametric models. We validate the proposed technique learning the dynamics of one arm of the iCub humanoid robot.File | Dimensione | Formato | |
---|---|---|---|
Incremental_semiparametric_inverse_dynamics_learning (1).pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982143