This paper presents a novel approach for incremental semiparametric inverse dynamics learning. In particular, we consider the mixture of two approaches: Parametric modeling based on rigid body dynamics equations and nonparametric modeling based on incremental kernel methods, with no prior information on the mechanical properties of the system. The result is an incremental semiparametric approach, leveraging the advantages of both the parametric and nonparametric models. We validate the proposed technique learning the dynamics of one arm of the iCub humanoid robot.

Incremental semiparametric inverse dynamics learning / Camoriano, R; Traversaro, S; Rosasco, L; Metta, G; Nori, F. - ELETTRONICO. - (2016), pp. 544-550. (Intervento presentato al convegno 2016 IEEE International Conference on Robotics and Automation (ICRA) tenutosi a Stockholm, Sweden nel May 16-21, 2016) [10.1109/ICRA.2016.7487177].

Incremental semiparametric inverse dynamics learning

Camoriano R;
2016

Abstract

This paper presents a novel approach for incremental semiparametric inverse dynamics learning. In particular, we consider the mixture of two approaches: Parametric modeling based on rigid body dynamics equations and nonparametric modeling based on incremental kernel methods, with no prior information on the mechanical properties of the system. The result is an incremental semiparametric approach, leveraging the advantages of both the parametric and nonparametric models. We validate the proposed technique learning the dynamics of one arm of the iCub humanoid robot.
2016
978-1-4673-8026-3
File in questo prodotto:
File Dimensione Formato  
Incremental_semiparametric_inverse_dynamics_learning (1).pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982143