The recently unveiled deep-field images from the James Webb Space Telescope have renewed interest in what we can and cannot see of the universe. Answering these questions requires understanding the so-called "cosmological horizons" and the "Hubble sphere." Here, we review the topic of cosmological horizons in a form that university physics teachers can use in their lessons, using the latest data about the so-called standard "Lambda cold dark matter" (?CDM) model. Graphical representations are plotted in terms of both conformal and proper coordinates as an aid to understand the propagation of light in the expanding universe at various epochs.

Cosmological horizons / RE FIORENTIN, Michele; Re Fiorentin, Stefano. - In: AMERICAN JOURNAL OF PHYSICS. - ISSN 0002-9505. - 91:8(2023), pp. 644-652. [10.1119/5.0127840]

Cosmological horizons

Michele Re Fiorentin;
2023

Abstract

The recently unveiled deep-field images from the James Webb Space Telescope have renewed interest in what we can and cannot see of the universe. Answering these questions requires understanding the so-called "cosmological horizons" and the "Hubble sphere." Here, we review the topic of cosmological horizons in a form that university physics teachers can use in their lessons, using the latest data about the so-called standard "Lambda cold dark matter" (?CDM) model. Graphical representations are plotted in terms of both conformal and proper coordinates as an aid to understand the propagation of light in the expanding universe at various epochs.
File in questo prodotto:
File Dimensione Formato  
644_1.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 928.4 kB
Formato Adobe PDF
928.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981607