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Cosmological horizons
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The recently unveiled deep-field images from the James Webb Space Telescope have renewed

interest in what we can and cannot see of the universe. Answering these questions requires

understanding the so-called “cosmological horizons” and the “Hubble sphere.” Here, we review the

topic of cosmological horizons in a form that university physics teachers can use in their lessons,

using the latest data about the so-called standard “Lambda cold dark matter” (KCDM) model.

Graphical representations are plotted in terms of both conformal and proper coordinates as an aid

to understand the propagation of light in the expanding universe at various epochs. # 2023 Published

under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0127840

I. INTRODUCTION

Amber Straughn, an astrophysicist at NASA’s Goddard Space
Flight Center in Maryland, said during the live event of presenta-
tion of the first James Webb’s images:1 “Today, for the first
time, we’re seeing brand new stars that were previously
completely hidden from our view.” This might suggest that with
technological evolution we will be able to see virtually every-
thing in the universe. In general, this statement should be under-
stood as limited to the so-called observable universe, bounded
by the particle horizon. Even within the observable universe,
two questions can be asked: (i) Is it possible to observe galaxies
that, due to the expansion of the universe, were receding at
superluminal speeds when they emitted their light? (ii) Waiting
even for infinite time, will it be possible in the future to see the
entire universe? Answers to these questions require the knowl-
edge of the so-called cosmological horizons, a topic that has
already been the subject of several publications. The first com-
prehensive one, aimed at providing a clear definition and repre-
sentation of horizons is Rindler’s 1956 paper,2 which
summarizes all previous works on the subject. However, it is
obsolete today. Another noteworthy article is by Edward
Harrison,3 which, however, was written in 1991, well before the
discovery of the accelerated expansion of the universe. The first
educational article devoted to the topic of cosmological horizons
belongs to the same period (1993) and was published in this
same journal4 by George Francis Rayner Ellis and Tony
Rothman. The treatment, however, was limited to a matter-only
universe, which is no longer acceptable today. More recent and
up-to-date works on the topic are those by Margalef-Bentabol,
Margalef-Bentabol, and Cepa5,6 and that by Faraoni in Chapter
3 of Cosmological and Black Hole Apparent Horizons.7

However, none of these references provide calculations of the
horizons with the current parameters of the KCDM model. This
literature, therefore, cannot be used directly to calculate the path
of photons emitted from different sources in the expanding uni-
verse and to evaluate how these sources are located with respect
to the horizons. It is worth mentioning that there have also been
publications aimed at correcting misconceptions on the topic,
such as the seminal ones by Davis8–10 which, however, do not
include a comprehensive treatment of cosmological horizons.

We will give, here, a didactic presentation of cosmological
horizons in the case of a flat universe, in view of the fact that
experimental evidence has shown that our universe does not

deviate appreciably from flatness.11 The presentation is
intended as a support for academics who want to teach the
topic of cosmological horizons in introductory courses on
relativity or cosmology. Since all the formulas for the vari-
ous quantities under consideration are derived in the text,
students could draw the graphs themselves or devise new
ones, using tools such as MATHEMATICA. Sections II–IV are
intended to provide the necessary background by summariz-
ing the known information. In particular, in Sec. II, we will
briefly present Hubble’s law, the Hubble radius, and the past
light cone. In Sec. III, we will define cosmological horizons,
while the third introductory section will be devoted to the
derivation of the expansion law of the scale factor.

II. THE EXPANDING UNIVERSE

The starting point is the metric of the homogeneous and
isotropic universe. This metric is known as the Friedmann–
Lemâıtre–Robertson–Walker (FLRW) metric that in spheri-
cal coordinates reads12

ds2 ¼ �c2dt2 þ a2ðtÞ dr2

1� kr2
þ r2 dh2 þ sin2 h du2

� �� �
;

(1)

where k is the curvature parameter. We will be concerned
with the case of a flat universe, where k¼ 0. The dimension-
less function a(t), called the scale factor, accounts for the
expansion, while r is called the comoving radial coordinate.
It is customary to assume that, at this time, ðt ¼ t0Þ; aðt0Þ
¼ 1, so that the comoving radial coordinate represents the
proper radial distance at this time. At the generic time t, the
proper radial distance is given by

RðtÞ ¼ aðtÞrðtÞ: (2)

The redshift z is the experimental observable that allows direct
evaluation of the scale factor at the time of the emission of the
radiation we receive today by means of the relation13

1þ z ¼ 1

a
: (3)

Considering a cosmic object moving in space with time-
varying comoving radial coordinate r(t) and taking the
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derivative of expression (2) with respect to time, we obtain
for the physical velocity of the cosmic object

vðtÞ¼ dRðtÞ
dt
¼ rðtÞdaðtÞ

dt
þaðtÞdr

dt
¼ vrecðtÞþ vpecðtÞ; (4)

where we have introduced the peculiar velocity of the cosmic
object

vpecðtÞ � aðtÞ dr

dt
; (5)

and the recession velocity due to the expansion of space

vrecðtÞ � rðtÞ daðtÞ
dt
¼ aðtÞ rðtÞ½ � 1

aðtÞ
daðtÞ

dt

� �
¼ RðtÞHðtÞ:

(6)

Here, we have defined the function

HðtÞ � 1

aðtÞ
daðtÞ

dt
; (7)

called Hubble parameter, whose value at this time, denoted
by H0 � Hðt0Þ, is customarily (but improperly) called the
Hubble constant. The relation (6) evaluated at this time

vrecðt0Þ ¼ H0 Rðt0Þ (8)

constitutes the so-called Hubble’s law, experimentally found
and published by Hubble in 1929.14 Expression (4) is useful
for determining the velocity that a photon travelling in space
along radial directions has with respect to us. In fact, know-
ing that the peculiar speed of light is always equal to c, this
formula allows us to obtain the velocity relative to us of a
photon that at time t is at the comoving radial coordinate r
and moving radially toward us (vpec ¼ �c),

vphotðtÞ ¼ r
daðtÞ

dt
� c ¼ vrecðtÞ � c: (9)

We observe that if vrec > c, the photon’s velocity becomes
positive and, thus, points away from us. The comoving radial
coordinate rH such that at time t we have rHðtÞ da=dt ¼ c is
called comoving Hubble radius at time t, and it delimits the
Hubble sphere

rHðtÞ � c
da

dt

� ��1

: (10)

A photon emitted from a source that has a comoving radial
coordinate greater than rH fails to approach us at the moment
of emission. However, as we shall see, the Hubble sphere
also expands with time so that in some cases it comes to
“encompass” the photon which then moves towards us.

As is well known, photons travel along null geodesics. If
we consider photons moving along radial directions, from
the FLRW metric (1) with k¼ 0, we can write that

aðtÞdr ¼ 6 cdt: (11)

The positive sign applies to photons travelling away from
the origin, while the negative sign describes photons moving
toward the origin. Taking into account Eq. (5), relation (11)

reflects the fact that the peculiar speed of light is always
equal to c. By integrating Eq. (11) with the negative sign
between the space-time point of emission and our space-time
point of observation ðt ¼ t0; r ¼ 0Þ, we obtain the comoving
distance travelled by light from the point of emission to us.
Denoting this distance by rLCðt0; tÞ, we get the definition

rLCðt0; tÞ �
ðt0

t

cdt0

aðt0Þ ðt < t0Þ: (12)

The function rLCðt0; tÞ for all t < t0 describes our past light
cone, which represents the locus of space-time points from
which the photons that reach us now were emitted. If instead
of present time t0, we consider the generic time t�, we obtain
the past light cone relative to time t�,

rLCðt�; tÞ �
ðt�

t

cdt0

aðt0Þ ðt < t�Þ: (13)

III. THE HORIZONS

Each past light cone has a maximum distance rLCðt�; 0Þ.
This is the comoving radial distance travelled by a radiation
(e.g., gravitational) emitted at time zero and received at time
t�. It has been given the name of comoving particle horizon,
and we denote it by rPHðt�Þ. Removing the superscript �, the
comoving particle horizon at time t is, therefore, defined by

rPHðtÞ �
ðt

0

cdt0

aðt0Þ : (14)

Of particular interest is the comoving particle horizon at pre-
sent time, rPHðt0Þ: It represents the farthest comoving dis-
tance from which we can retrieve information from the past
and constitutes the boundary between the region whose
events have already been observed and the region whose
events cannot yet be observed. We mention that sometimes
the optical horizon rOHðt0Þ is introduced.7 It is simply the
comoving radial distance travelled by photons emitted when
light has decoupled from matter. These photons constitute
the cosmic microwave background radiation (CMBR) and
originate from the maximum distance one can see in the
electromagnetic domain. Indicating with tls the time of emis-
sion of the CMBR, the optical horizon is defined by

rOHðtÞ �
ðt

tls

cdt0

aðt0Þ ðt > tlsÞ: (15)

The concept of particle horizon is more relevant than that of
optical horizon, since there could be gravitational waves that
bring us information about what happened before photon
decoupling.

The light cone relative to an infinite time rLCð1; tÞ is of
particular interest. It constitutes the locus of the space-time
points (t, r) from which the radiation will reach r¼ 0 at an
infinite time. The relevance of this light cone lies in the fact
that it constitutes a horizon because a photon emitted from a
position beyond this limit can never reach r¼ 0. It is, there-
fore, called the comoving event horizon at time t, and we
denote it by rEHðtÞ. From Eq. (13), we get

rEHðtÞ �
ð1

t

cdt0

aðt0Þ : (16)
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To fully understand the implications that horizons and the
Hubble sphere have on the visibility of cosmic objects, it is
helpful to plot them in space-time diagrams. To this end, it is
first necessary to determine the time dependence of the scale
factor.

IV. EVOLUTION OF THE SCALE FACTOR

We can obtain the equations for determining the time
dependence of the scale factor by substituting the metric (1)
into the Einstein field equations. The stress-energy tensor for
the isotropic, homogeneous universe is that of a perfect fluid,
given by12

Tl� ¼ qþ p

c2

� �
ulu� þ pgl�; (17)

q and p being the mass density and pressure, respectively,
and ul is the 4-velocity vector field of the fluid. Due to the
symmetry of the metric (1), the ten field equations reduce to
two, known as Friedmann equations, that in the case of k¼ 0
are13

1

a

da

dt

� �2

¼ 8pG

3
qþ 1

3
Kc2; (18)

1

a

d2a

dt2

� �
¼ � 4pG

3
qþ 3p

c2

� �
þ 1

3
Kc2; (19)

where K is the so-called cosmological constant that appears
in the field equations. Using the first equation, the second
can be rewritten as

dq
dt
¼ �3H qþ p

c2

� �
; (20)

which expresses the conservation of mass-energy, since it
coincides with rlTl

0 ¼ 0.12 If the fluid is a mixture of two
or more non-interacting fluids, such an equation holds sepa-
rately for each fluid. This assumption is crucial for the solu-
tion of the Friedmann equations and is generally accepted.
Furthermore, it is assumed that each fluid has an equation of
state of the type

p ¼ wqc2; (21)

where w is a constant that takes the value 0 for matter (both
barionic and dark matter) and 1/3 for radiation. Using previ-
ous assumptions and substituting Eq. (21) into Eq. (20), we
arrive at

qmðtÞ ¼ qm0 aðtÞ�3
for matter; (22)

qrðtÞ ¼ qr0 aðtÞ�4
for radiation; (23)

where qm0 and qr0 are the matter density and radiation den-
sity at this time, respectively. We will assume in the follow-
ing that matter dominates over radiation, an assumption that
only fails in the first �30 000 year, a period of time that rep-
resents about two millionths of the current lifetime of the
universe. For simplicity, we will omit the subscript m in the
matter density in the following. Substituting Eq. (22) into
Eq. (18), we get

1

a

da

dt

� �2

¼ 8pG

3
q0aðtÞ�3 þ 1

3
Kc2: (24)

Inserting this relationship into Eq. (7) and evaluating at this
time yields

H2
0 ¼

8pG

3
q0 þ

1

3
Kc2: (25)

It is customary to define the following dimensionless
constants:

Xm �
8pGq0

3H2
0

; XK �
Kc2

3H2
0

; (26)

so that Eq. (25) gives

Xm þ XK ¼ 1: (27)

According to the results published by the Planck Collaboration
in 2020,11 the most accepted values for Xm, XK, and H0 are15

Xm¼ 0:311160:0056; XK¼ 0:688960:0056;

H0¼ 67:6660:42ðkm=sÞ=Mpc: (28)

Substituting the definitions (26) into Eq. (24), we obtain

1

a

da

dt
¼ 6 H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� XKÞa�3 þ XK

p
ða � 0Þ: (29)

Depending on the sign, this expression describes a monotoni-
cally increasing or decreasing scale factor. Since the scale
factor is currently increasing, we must choose the plus sign.
Furthermore, by defining x ¼ a3=2, Eq. (29) can be put in the
form

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� XKÞ=XK þ x2

p ¼ 3H0

ffiffiffiffiffiffiffi
XK
p

2
dt ðx � 0Þ: (30)

Knowing that

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p ¼ d

dx
sinh�1 x

a

� �
; (31)

Eq. (30) can be easily integrated. The lower integration limit
for time is zero, while the lower limit for x depends on the
value that the scale factor takes on at time zero. It is generally
assumed to be zero, but actually, it could also be other than
zero, as in the case where an initial period of inflation is con-
sidered. In any case, it is a very small value on a cosmological
scale, so we will conform to the custom of considering it equal
to zero. We, thus, arrive at the following expression:

aðtÞ ¼ 1� XK

XK

� �1=3

sinh2=3 3H0

ffiffiffiffiffiffiffi
XK
p

2
t

� �
ðt � 0Þ:

(32)

We emphasize that this time dependence of the scale factor
is relative to the KCDM cosmological model that best
describes the universe we live in, which assumes that it is
flat and that the contribution from radiation, affecting only
the very early stages of cosmic expansion, is negligible.
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V. THE HORIZONS IN CONFORMAL

COORDINATES

The representation of cosmological horizons becomes par-
ticularly simple if we introduce a new time variable, denoted
by g, defined by the relation

gðtÞ �
ðt

0

dt0

aðt0Þ ; (33)

so that

dg ¼ dt

aðtÞ : (34)

The simplification occurs because this last expression is the
integrand that appears in Eqs. (12), (14), and (16) that define
our past light cone, the particle horizon, and the event hori-
zon, respectively. As a function of the new time variable, the
FLRW metric (1) with k¼ 0 reads

ds2¼ a2ðgÞ �c2dg2þdr2þ r2 dh2þ sin2 hdu2
� �	 


; (35)

which is a flat Minkowski metric except for the conformal
factor a2ðgÞ; for this reason, g is called the conformal time.
We will refer to the conformal time and to the comoving
radial distance as “conformal coordinates.” In order to evalu-
ate the integrals in Eqs. (12), (14), and (16), once expression
(34) has been inserted, we need to determine the values of
gðt0Þ (that we denote with g0) and of gð1Þ. This last, as we
will see, in the case of the KCDM model assumes a finite
value that we denote with gmax. We will calculate these val-
ues in Sec. VI. Substituting expression (34) into Eqs. (12),
(14), and (16), we get, respectively,

Past Light Cone atg0 :

rLCðg0;gÞ ¼
ðg0

g
cdg¼ cðg0� gÞ ð0< g< g0Þ; (36)

Particle Horizon :

rPHðgÞ ¼
ðg

0

cdg ¼ cg ð0 < g < gmaxÞ; (37)

EventHorizon:

rEHðgÞ¼
ðgmax

g
cdg¼ cðgmax�gÞ ð0<g<gmaxÞ: (38)

These are equations of 6 45� straight lines in the conformal
coordinates ðr; gÞ if we express r in Glyr and g in Gyr and
adopt the same lengths for the units of Glyr and Gyr.

VI. CONFORMAL DIAGRAM

To plot the horizons in conformal coordinates, we need to
calculate the values of g0 and gmax, as required by Eqs. (36)
and (38). To this end, it is necessary to determine the function
gðtÞ. Substituting the expression (32) into Eq. (33), we get

gðtÞ ¼ 1

n
XK

1� XK

� �1=3 ðnt

0

dx

sinh2=3ðxÞ
; (39)

having defined the constant

n � 3H0

ffiffiffiffiffiffiffi
XK
p

2
¼ ð8:609 6 0:064Þ 	 10�2 Gyr�1: (40)

The integral that appears in Eq. (39) involves the Gaussian
hypergeometric function 2F1ða; b; c; zÞ,16

ð
dx

sinh2=3ðxÞ
¼ ð�1Þ5=6

coshðxÞ 2F1

1

2
;
5

6
;
3

2
; cosh2ðxÞ

� �
:

(41)

In order to compute g0, we derive the value of nt0 from Eq.
(32) using the condition aðt0Þ ¼ 1,

nt0 ¼ arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

1�XK

s
¼ arctanh

ffiffiffiffiffiffiffi
XK

p
¼ 1:1886 0:011:

(42)

Knowing the value of n from Eq. (40), we get for the current
age of the universe the value t0 ¼ 13:80 6 0:10 Gyr.
Substituting the value (42) into the upper integration limit of
Eq. (39) and using the expression (41), we obtain
g0 ¼ 47:10 6 0:39 Gyr.

In order to determine gmax, we take into account thatð1
0

dx

sinh2=3ðxÞ
¼ 9ffiffiffi

p
p C

7

6

� �
C

4

3

� �
’ 4:2065…: (43)

Using this in Eq. (39) together with the other constants, we
obtain gmax ¼ 63:69 6 0:49 Gyr. It is useful, for future pur-
poses, to study the behaviour of gðtÞ for both small and large
values of nt. In the first case, in the integrand of Eq. (39) we
can replace sinhðxÞ with its series expansion near x¼ 0,
obtaining at first order

gðtÞ ’ 3

n
XK

1� XK

� �1=3

ðntÞ1=3 ðnt
 1Þ: (44)

For large values of nt, it is appropriate to rewrite Eq. (39) in
the form

gðtÞ ¼ gmax �
1

n
XK

1� XK

� �1=3 ð1
nt

dx

sinh2=3ðxÞ
: (45)

The integral on the right-hand side, for large values of x, can
be calculated by substituting sinhðxÞ with ex=2, obtaining

gðtÞ ’ gmax �
3

21=3n

XK

1� XK

� �1=3

e�
2
3
nt ðnt� 1Þ:

(46)

This expression shows that for large values of cosmic time,
the conformal time slows to a halt. The function gðtÞ is
shown in Fig. 1 on logarithmic scales. We are now ready to
graph our past light cone and the two horizons according
to Eqs. (36)–(38), plotting the conformal time vs. the
comoving radial distance. In this conformal representation,
the world lines of comoving cosmic objects are
vertical straight lines. To represent the Hubble sphere, we
use Eq. (10) substituting in it the expression (32), thus
obtaining
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rHðtÞ ¼
3c

2n
XK

1� XK

� �1=3
sinh1=3 ntð Þ
cosh ntð Þ : (47)

To get rHðgÞ, we would have to invert Eq. (39) to get tðgÞ to
be substituted in Eq. (47). Unfortunately, this step can only
be performed numerically.17 However, it is possible to obtain
approximate expressions for both small and large values of
nt. In the first case, restricting ourselves to the first-order
term of the series expansion of the right-hand side of Eq.
(47) in terms of nt in the proximity of nt ¼ 0, we get

rHðtÞ ’
3c

2n
XK

1� XK

� �1=3

ðntÞ1=3 ðnt
 1Þ: (48)

Using expression (44), we can then write the Hubble radius
in terms of the conformal time as

rHðgÞ ’
1

2
c g ðg
 1Þ: (49)

This is a straight line of slope 2 in the plane ðr; cgÞ. Instead,
for large values of nt, we can adopt for expression (47) the
approximation

rHðtÞ ’
3c

21=3n

XK

1� XK

� �1=3

e�
2
3
nt ðnt� 1Þ: (50)

Then thanks to Eq. (46), we can finally write rH as a function
of g,

rHðgÞ ’ c ðgmax � gÞ ðg� 1Þ: (51)

This is exactly the expression of the event horizon (16): at
large conformal times, the Hubble sphere becomes tangent
to the event horizon. We will see later that this is because the
physical velocity of photons proceeding along the event hori-
zon (which is a null geodesic) tends progressively to zero,
and thus, the event horizon tends to the Hubble sphere. It can
be shown numerically that everywhere else (that is, for
g < gmax) relation rEHðgÞ > rHðgÞ results.

While the straight line described in Eq. (49) diverges from
r¼ 0, the straight line (51) converges to r¼ 0. This means
that the conformal Hubble radius must reach a maximum
value. Unfortunately, it is not possible to determine it in

closed form, but it can be found numerically that its value is
ðrHÞmax ’ 16:52 Glyr at conformal time g ¼ 39:25 Gyr (cos-
mic time t¼ 7.65 Gyr).

All the curves are shown in Fig. 2, which comprehensively
illustrates the dynamics of each light emission event, thus
making it clear what structures we can see today, will see in
the future, and will never see, regardless of the resolving
power of telescopes. We begin by considering the A0

event placed on our past light cone near time zero (or,
for convenience, at the time of the surface of last scattering
tls ’ 380 000 years: It could be a spot in the CMBR with
a slightly different temperature). Such an emission event
occurred at the comoving radial coordinate r ’ c g0

¼ 47:10 6 0:39 Glyr, well outside the Hubble sphere, whose
radius goes to zero for t! 0. So the photons emitted in A0

toward the origin had a receding (positive) physical velocity
relative to us. In particular, Eq. (6) with t ¼ tls gives
vrecðtlsÞ ’ 65 c, a highly superluminal. However, as can be
seen from Fig. 2, in comoving coordinates, the velocity was
of approach (negative). This is because in conformal coordi-
nates, the expansion velocity is absent and, thus, the total
velocity coincides with the peculiar velocity, which for light
is always equal to 6c. In fact, based on Eqs. (11) and (34),
in conformal coordinates, the velocity of light always results,
vpec ¼ dr=dg ¼ 6c, so there cannot be superluminal veloci-
ties. Therefore, in these coordinates, photons emitted in A0

approached the Hubble sphere, which they reached at g
’ 31:91 Gyr (t ’ 4:05 Gyr). After that, they travelled toward
us at an increasing physical speed. Meanwhile, a possible
lump in A0 has evolved into structures that now reside in A1

(r ¼ rPHðt0Þ ¼ c g0; g ¼ g0): structures that will never be
visible to us, since they fall well outside the event horizon,
whose value at this time is rEHðt0Þ ¼ cðgmax � g0Þ ’ 16:59
6 0:18 Glyr. Simultaneously with the CMBR coming from
event A0, we also receive the light coming from all events
laying on our past light cone, for example, events C2 (at
r¼ 20.0 Glyr) and E (at r¼ 10.0 Glyr). While the emission
from C2 was still outside the Hubble sphere, the emission
from E was inside, and thus, its photons always had negative
velocities in both comoving and physical coordinates.

Studying Fig. 2 leads us to the following series of
conclusions:

(A) An emission of light that occurred at any space-time
point inside our past light cone has reached us in every
case, regardless of whether the emission point was
inside or outside the Hubble sphere (see, e.g., emission
event C1). In principle, we could see all emission events
that lie on our past light cone. It is only a matter of tele-
scope resolution at the various observing frequencies
whether we are actually able to see them. In this regard,
the JWST telescope has greatly improved in resolving
power over the previous Hubble telescope, and thus, it
has become possible to see sources not bright enough to
be detected by Hubble.

(B) An emission of light that occurred at any space-time
point outside our past light cone but within the event
horizon, entered (or will enter) the Hubble sphere, if not
already within it, and will reach us at a future time
between now and infinity (see, e.g., emission event B at
r¼ 30.0 Glyr, g ¼ 25:0 Gyr that will reach us at g
¼ 55:0 Gyr or t ’ 24:8 Gyr). Whether this radiation can
be detected will depend only on the sensitivity of the
telescopes.

Fig. 1. Representation of conformal time g as a function of cosmic time t.
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(C) An emission of light occurring anywhere outside the
event horizon will never be able to reach us. In particu-
lar, we will never see the background radiation emitted
by cosmic structures having a comoving radial coordi-
nate greater than 63.69 Glyr. This is a relevant point that
can only be seen in this diagram, since the representa-
tion in physical coordinates does not highlight this fact.

(D) We can see objects that have always been receding at
superluminal speeds, like the comoving structure identi-
fied with the letter C, of which the emission events C0,
C1, C2 are shown. In the conformal coordinate graph,
this is clear because the photon recession velocity is
absent, whereas, as we shall see, in the physical coordi-
nate graph, this is explained because the Hubble sphere
expands faster than the recession velocity of the emitted
photons, catches up with them, and encompasses them.

(E) Once a cosmic object falls within the particle horizon, it
remains within this horizon. For example, in Fig. 2, the
light coming from the cosmic structures placed at the
radial distance of 20.0 Glyr on the surface of last scatter-
ing (C0 event of CMBR emission), entered the particle
horizon at the conformal time g ¼ 10:0 Gyr, and
became visible to us at g ¼ 20:0 Gyr. They have been
visible ever since and will still be visible in the future:
for example, the light emitted at C1 (g ¼ 20:0 Gyr)
reached us at g ¼ 40:0 Gyr, while the light emitted at C2

on our past light cone reaches us just now. It follows
that statements referring to galaxies entering and then
leaving the particle horizon are false.

(F) On the contrary, there can be cosmic structures that
enter and then leave the Hubble sphere. An example,
shown in Fig. 2, is cosmic objects placed at a comoving
radial distance of 15.0 Glyr, which entered the Hubble
sphere at g ’ 31:4 Gyr (event D1) and exited at g
’ 46:0 Gyr (event D2). We now see these cosmic
objects as they were when they crossed our past light
cone, at g ’ 32:1 Gyr.

VII. PHYSICAL COORDINATES DIAGRAM

Using conformal diagrams implies a penalty: They
completely hide true distances. The proper distance between
different cosmic regions when t! 0 goes to zero, while in
the conformal diagram it remains constant, fixed at today’s
value. The physical distances near t¼ 0 are, thus, severely
distorted, appearing much larger than they actually are, and
this distortion becomes infinitely large as t! 0. We, there-
fore, reproduce the key features of Fig. 2 in physical coordi-
nates (cosmic time and proper radial distance) by replacing
the conformal time g with the cosmic time t and multiplying
the comoving coordinates r(t) at time t by the scale factor
a(t). The graph takes on the appearance shown in Fig. 3,
where the lattice of constant comoving radial distances is
translated into a series of lines starting from the origin and
progressively diverging. The drawback of this representa-
tion, compared to the conformal one, lies in the fact that
everything is “squashed” toward the null proper radial dis-
tance at time zero. For this reason, Fig. 4 shows a detail of
this region, in which the same lengths are adopted for the
units of Glyr and Gyr. This figure also illustrates some
details of Fig. 2 such as light rays propagating towards the
origin from the B and C1 emission events, and the paths of
comoving particles A, C, and D. The functional dependencies
on cosmic time of particle and event horizons expressed in
terms of proper radial distance, as well as the equation of our
past light cone, become more complex than those in terms of
conformal coordinates (36)–(38). However, we can easily
derive the analytical form of the different entities.

For our past light cone in terms of physical coordinates,
RLCðt0; tÞ � aðtÞ rLCðt0; tÞ, we use the definition (12) of
rLCðt0; tÞ as well as the expression (32) for a(t), obtaining

RLCðt0; tÞ ¼ c

n
sinh2=3 ntð Þ

ðnt0

nt

dx

sinh2=3ðxÞ
ðt � t0Þ: (52)

As can be seen from Figs. 3 and 4, the past light cone takes
on the appearance of a “drop” because toward time zero the

Fig. 2. Graph of past light cone at t0, particle horizon, event horizon, and Hubble sphere in conformal coordinates, together with the paths to the origin of pho-

tons emitted in events A0, B, C0, C1, C2, and E. Events D1 and D2 mark, respectively, the entry and exit from the Hubble sphere of the cosmic object placed at

the comoving radial distance r¼ 15.0 Glyr.
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scale factor tends to zero. The photons emitted at time zero
were originally very close to the origin, from which they
moved away until they crossed the Hubble sphere at t ’ 4:06
Gyr reaching the maximum proper radial distance,
RLCðt0; 4:06Þ ’ 5:85 Glyr. They then began to approach us.
Like Fig. 2, Fig. 4 also shows the light tracks toward us for
the emissions that occurred at the C1 and B events. These
paths belong to past light cones pertaining to cosmic times
t� ’ 8:12 Gyr and t� ’ 24:85 Gyr. Like our past light cone,

all these light cones reach their maximum radial proper dis-
tance when they cross the Hubble sphere.

For the particle horizon in physical coordinates,
RPHðtÞ � aðtÞ rPHðtÞ, we use the definition (14) of rPHðtÞ
obtaining

RPHðtÞ ¼
c

n
sinh2=3 ntð Þ

ðnt

0

dx

sinh2=3ðxÞ
: (53)

Fig. 3. Graph of past light cone at t0, particle horizon, event horizon, and Hubble sphere in physical coordinates.

Fig. 4. Detail of Fig. 3 with light rays emitted towards the origin at B and C1, and the paths of comoving particles A, C, and D.
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Presently, RPHðt0Þ ¼ rPHðg0Þ ¼ c g0 ¼ 47:10 6 0:39 Glyr, a
distance corresponding to 3.41 times the age of the universe,
which means that comoving cosmic structures belonging to
that region (region A) travelled away from us at an effective
speed larger than three times the speed of light. Currently,
the recession speed of these cosmic structures, on the
basis of Eq. (6), is vrec ¼ RPHðt0ÞHðt0Þ ¼ ð3:257 6 0:033Þ c.
Although limt!1 rPHðtÞ ¼ 63:69 6 0:49 Glyr, in physical
coordinates limt!1 RPHðtÞ ¼ 1. This implies that the point
in space that emitted the background radiation that will reach
us in an infinitely large time will be at an infinitely large dis-
tance. However, as we already pointed out, this does not
mean that we will be able to see the entire universe: regions
that are at comoving coordinates r> 63.69 Glyr will never
be visible to us.

For the Hubble radius in physical coordinates, RHðtÞ
� aðtÞ rHðtÞ ¼ c=HðtÞ, we use the definition (7) for H(t) and
obtain

RHðtÞ ¼
3c

2n
tanh ntð Þ: (54)

Its value today is RHðt0Þ ¼ c=H0 ¼ 14:46 6 0:09 Glyr.
Furthermore,

RH1 � lim
t!1

RHðtÞ ¼
3c

2n
¼ 17:42 6 0:13 Glyr: (55)

This means that

H1 � lim
t!1

HðtÞ ¼ 2

3
n ¼ H0

ffiffiffiffiffiffiffi
XK

p
¼ 56:16 6 0:42 ðkm=sÞ=Mpc; (56)

while

HðtÞ ¼ H0

ffiffiffiffiffiffiffi
XK

p
cothðntÞ: (57)

Finally, for the event horizon in physical coordinates,
REHðtÞ � aðtÞ rEHðtÞ, we use the definition (16) of rEHðtÞ
obtaining

REHðtÞ ¼
c

n
sinh2=3 ntð Þ

ð1
nt

dx

sinh2=3ðxÞ
: (58)

We have seen that, at all times, the event horizon is always
larger than the Hubble radius and that when the cosmic time
tends to infinity, it tends asymptotically to the Hubble radius.
We have anticipated that this feature is due to the fact that
the physical velocity of photons proceeding along the event
horizon tends progressively to zero. We can now prove this
assertion by taking the derivative with respect to cosmic
time of expression (58)

dREH

dt
¼ c

2

3
sinh�1=3 ntð Þcosh ntð Þ

ð1
nt

dx

sinh2=3ðxÞ
� c:

(59)

For large values of nt, we can substitute exp ðntÞ=2 for
sinhðntÞ and coshðntÞ, thus obtaining

dREH

dt
¼ c

e
2
3
nt

3 	 2�1
3

ð1
nt

2
2
3e�

2
3
xdx� c ¼ c� c ¼ 0: (60)

We can also verify that the asymptotic value reached by REH

coincides with the value found for RH1,

REH1 � lim
t!1

REHðtÞ ¼
c

n
lim
t!1

d

dt

ð1
nt

dx

sinh2=3ðxÞ

" #

d

dt

1

sinh2=3 ntð Þ

" # ¼ 3c

2n
:

(61)

Fig. 5. Light cone, particle horizon, event horizon, and Hubble sphere as a function of the redshift of incoming radiation. The regions where emission events

that could be observed in the past and can be observed in the future are indicated. The boundary between the two regions is given by our past light cone.
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While for t!1, the comoving Hubble radius rH and the
comoving event horizon rEH tend to r¼ 0, in terms of physical
radial distance RH and REH are always increasing in time and
tend to the common constant limit (55). The event horizon
today is REHðg0Þ ¼ rEHðt0Þ ¼ 16:59 6 0:18 Glyr: Radiation
emitted today by sources that are within this maximum radial
distance will always be able to reach us in the future.

VIII. HORIZONS AND REDSHIFT

The connection of the previously analysed quantities with
experimental observables is made through the cosmological
redshift z. The redshift allows the direct determination of the
scale factor by means of Eq. (3) and, through Eq. (32), the
KCDM model provides an evaluation of the cosmic time at
which the emission event occurred. By virtue of the relation-
ship between redshift and emission time, all quantities can be
described and represented as a function of redshift. Figure 5
gives such a representation. In particular, the equation for the
past light cone in terms of physical coordinates, Eq. (52), gives
the proper radial distance of the emitting body at the time of
emission. On this curve lie all the emission events that we can
detect today. Below it lie the emission events whose radiation
has come to us in the past (pale yellow area in Fig. 5), while
above, but below the event horizon curve, are the emission
events whose radiation will reach us in the future (pale blue
area in Fig. 5). The equation for the past light cone (12) gives
the comoving radial distance of the emitting body, which coin-
cides with its current proper radial distance.

IX. CONCLUSIONS

Referring to the so-called standard cosmological KCDM
model, the properties of cosmological horizons (particle hori-
zon, optical horizon, and event horizon), the past light cone at
various epochs (especially our past light cone), and the Hubble
sphere have been illustrated. With the help of graphical repre-
sentations, both in conformal and physical coordinates, the
radial motion of photons was examined, and their physical
velocities with respect to us were derived. It has, thus, been
clarified what portions of the universe we can and will be able
to see in the future, and what we can never see. The treatment
is aimed at teachers who wish to comprehensively explain cos-
mological horizons in their Relativity or Cosmology courses.
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