As a result of the widespread use of intelligent assistants, personalization in dialogue systems has become a hot topic in both research and industry. Typically, training such systems is computationally expensive, especially when using recent large language models. To address this challenge, we develop an approach to personalize dialogue systems using adapter layers and topic modelling. Our implementation enables the model to incorporate user-specific information, achieving promising results by training only a small fraction of parameters.

Personalization in BERT with Adapter Modules and Topic Modelling / Braga, Marco; Raganato, Alessandro; Pasi, Gabriella. - ELETTRONICO. - 3448:(2023), pp. 24-29. (Intervento presentato al convegno IIR 2023 Italian Information Retrieval Workshop 2023 tenutosi a Pisa (ITA) nel June 8-9, 2023).

Personalization in BERT with Adapter Modules and Topic Modelling

Braga, Marco;
2023

Abstract

As a result of the widespread use of intelligent assistants, personalization in dialogue systems has become a hot topic in both research and industry. Typically, training such systems is computationally expensive, especially when using recent large language models. To address this challenge, we develop an approach to personalize dialogue systems using adapter layers and topic modelling. Our implementation enables the model to incorporate user-specific information, achieving promising results by training only a small fraction of parameters.
2023
File in questo prodotto:
File Dimensione Formato  
paper-13.pdf

accesso aperto

Descrizione: Paper Camera Ready
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 986.63 kB
Formato Adobe PDF
986.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981229