This paper focuses on the application of an efficient implementation of the vector-valued kernel Ridge regression (KRR) to the uncertainty quantification (UQ) of the scattering parameters of a low-noise amplifier (LNA). Specifically, the performance of the proposed technique have been investigated for the statistical assessment of the mean value, variance and probability density function (PDF) of the S11 and S21 parameters of a 2-GHz LNA induced by 25 stochastic input parameters and compared with the corresponding reference results computed via a plain Monte Carlo (MC) simulation.

Efficient Implementation of the Vector-Valued Kernel Ridge Regression for the Uncertainty Quantification of the Scattering Parameters of a 2-GHz Low-Noise Amplifier / Soleimani, Nastaran; Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2023), pp. 143-146. (Intervento presentato al convegno IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO'2023) tenutosi a Winnipeg, MB (CAN) nel 28-30 June 2023) [10.1109/NEMO56117.2023.10202518].

Efficient Implementation of the Vector-Valued Kernel Ridge Regression for the Uncertainty Quantification of the Scattering Parameters of a 2-GHz Low-Noise Amplifier

Soleimani, Nastaran;Manfredi, Paolo;Trinchero, Riccardo
2023

Abstract

This paper focuses on the application of an efficient implementation of the vector-valued kernel Ridge regression (KRR) to the uncertainty quantification (UQ) of the scattering parameters of a low-noise amplifier (LNA). Specifically, the performance of the proposed technique have been investigated for the statistical assessment of the mean value, variance and probability density function (PDF) of the S11 and S21 parameters of a 2-GHz LNA induced by 25 stochastic input parameters and compared with the corresponding reference results computed via a plain Monte Carlo (MC) simulation.
2023
979-8-3503-4740-1
File in questo prodotto:
File Dimensione Formato  
NEMO2023_UQ_LNA_Vector_Valued_KRR (2).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 408.56 kB
Formato Adobe PDF
408.56 kB Adobe PDF Visualizza/Apri
Soleimani-Efficient.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 481.72 kB
Formato Adobe PDF
481.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980404