This paper focuses on the application of an efficient implementation of the vector-valued kernel Ridge regression (KRR) to the uncertainty quantification (UQ) of the scattering parameters of a low-noise amplifier (LNA). Specifically, the performance of the proposed technique have been investigated for the statistical assessment of the mean value, variance and probability density function (PDF) of the S11 and S21 parameters of a 2-GHz LNA induced by 25 stochastic input parameters and compared with the corresponding reference results computed via a plain Monte Carlo (MC) simulation.
Efficient Implementation of the Vector-Valued Kernel Ridge Regression for the Uncertainty Quantification of the Scattering Parameters of a 2-GHz Low-Noise Amplifier / Soleimani, Nastaran; Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2023), pp. 143-146. (Intervento presentato al convegno IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO'2023) tenutosi a Winnipeg, MB (CAN) nel 28-30 June 2023) [10.1109/NEMO56117.2023.10202518].
Efficient Implementation of the Vector-Valued Kernel Ridge Regression for the Uncertainty Quantification of the Scattering Parameters of a 2-GHz Low-Noise Amplifier
Soleimani, Nastaran;Manfredi, Paolo;Trinchero, Riccardo
2023
Abstract
This paper focuses on the application of an efficient implementation of the vector-valued kernel Ridge regression (KRR) to the uncertainty quantification (UQ) of the scattering parameters of a low-noise amplifier (LNA). Specifically, the performance of the proposed technique have been investigated for the statistical assessment of the mean value, variance and probability density function (PDF) of the S11 and S21 parameters of a 2-GHz LNA induced by 25 stochastic input parameters and compared with the corresponding reference results computed via a plain Monte Carlo (MC) simulation.File | Dimensione | Formato | |
---|---|---|---|
NEMO2023_UQ_LNA_Vector_Valued_KRR (2).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
408.56 kB
Formato
Adobe PDF
|
408.56 kB | Adobe PDF | Visualizza/Apri |
Soleimani-Efficient.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
481.72 kB
Formato
Adobe PDF
|
481.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2980404