A recent trend dictating evolution of management and orchestration of computer networks is constituted by the softwarization and virtualization of them, which have drastically simplified the deployment and real-time reconfiguration of network functions, allowing them to continuously adapt and to deal with dynamic demands in an automated way. Alongside, recent management and orchestration approaches for softwarized networks employ Artificial Intelligence (AI) and Machine Learning (ML) to further reduce reaction time and improve the accuracy of decisions, where the network operations can be automated to the point of realizing autonomous driving networks. However, while automating operations can improve the overall system (it is acknowledged that 70% of network faults are caused by manual errors), AI/ML methods are not the panaceas, and we are still far from having a fully operating and efficient automated architecture. In this dissertation, we present a novel class of software network solutions that share the goal of enabling intelligent and autonomous computer networks, exploring how to exploit the power of AI/ML to handle the growing complexity of critical systems. We start with a new network management scheme for adaptive routing and autonomous scaling of virtual network resources. Then, acting on the hosts, we propose to adjust the TCP congestion control with a ML-based solution, whose goal is to select the proper congestion window learning from end-to-end features and (when available) network signals. We believe that the proposed solutions, and their combination, can lay the foundation for automated systems that better suit modern edge environments and cellular networks by providing unprecedented flexibility and adaptation to even unseen and unknown network conditions.

Towards Autonomous Computer Networks in Support of Critical Systems / Sacco, Alessio; Marchetto, Guido. - ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al convegno NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium tenutosi a Miami, FL (USA) nel 08-12 May 2023) [10.1109/NOMS56928.2023.10154457].

Towards Autonomous Computer Networks in Support of Critical Systems

Alessio Sacco;Guido Marchetto
2023

Abstract

A recent trend dictating evolution of management and orchestration of computer networks is constituted by the softwarization and virtualization of them, which have drastically simplified the deployment and real-time reconfiguration of network functions, allowing them to continuously adapt and to deal with dynamic demands in an automated way. Alongside, recent management and orchestration approaches for softwarized networks employ Artificial Intelligence (AI) and Machine Learning (ML) to further reduce reaction time and improve the accuracy of decisions, where the network operations can be automated to the point of realizing autonomous driving networks. However, while automating operations can improve the overall system (it is acknowledged that 70% of network faults are caused by manual errors), AI/ML methods are not the panaceas, and we are still far from having a fully operating and efficient automated architecture. In this dissertation, we present a novel class of software network solutions that share the goal of enabling intelligent and autonomous computer networks, exploring how to exploit the power of AI/ML to handle the growing complexity of critical systems. We start with a new network management scheme for adaptive routing and autonomous scaling of virtual network resources. Then, acting on the hosts, we propose to adjust the TCP congestion control with a ML-based solution, whose goal is to select the proper congestion window learning from end-to-end features and (when available) network signals. We believe that the proposed solutions, and their combination, can lay the foundation for automated systems that better suit modern edge environments and cellular networks by providing unprecedented flexibility and adaptation to even unseen and unknown network conditions.
2023
978-1-6654-7716-1
File in questo prodotto:
File Dimensione Formato  
Towards_Autonomous_Computer_Networks_in_Support_of_Critical_Systems.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 551.69 kB
Formato Adobe PDF
551.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
NOMS_23___Dissertation.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 466.88 kB
Formato Adobe PDF
466.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980076