This work proposes a semi-empirical framework to predict the noise of wind turbines with serrated trailing edge blades. The framework is employed for studying the reduction of the noise of the SWT 2.3-93 benchmark wind turbine. The framework is verified against field acoustic measurements of the real wind-turbine model and of noise reduction measured for airfoil geometries with serrated trailing edges. Two different serration design strategies are proposed, respectively one with the same serration geometry along the blade and one with serrations scaled with the local boundary-layer properties along the radius. Results show the predicted noise reduction obtained with each of the add-ons and explore the benefits of tailoring the design of the serrations according to the varying flow conditions along the blade span.

Semi-empirical framework for predicting the noise from wind-turbine blades with serrated trailing edges / Lima Pereira, Lourenco Tercio; Avallone, Francesco; Ragni, Daniele; Buck, Steven; Oerlemans, Stefan. - (2023). (Intervento presentato al convegno AIAA AVIATION 2023 Forum tenutosi a San Diego, CA and Online nel 12-16 June 2023) [10.2514/6.2023-3644].

Semi-empirical framework for predicting the noise from wind-turbine blades with serrated trailing edges

Avallone, Francesco;
2023

Abstract

This work proposes a semi-empirical framework to predict the noise of wind turbines with serrated trailing edge blades. The framework is employed for studying the reduction of the noise of the SWT 2.3-93 benchmark wind turbine. The framework is verified against field acoustic measurements of the real wind-turbine model and of noise reduction measured for airfoil geometries with serrated trailing edges. Two different serration design strategies are proposed, respectively one with the same serration geometry along the blade and one with serrations scaled with the local boundary-layer properties along the radius. Results show the predicted noise reduction obtained with each of the add-ons and explore the benefits of tailoring the design of the serrations according to the varying flow conditions along the blade span.
2023
978-1-62410-704-7
File in questo prodotto:
File Dimensione Formato  
6.2023-3644.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979289