Modern smartwatches often include photoplethysmographic (PPG) sensors to measure heartbeats or blood pressure through complex algorithms that fuse PPG data with other signals. In this work, we propose a collaborative inference approach that uses both a smartwatch and a connected smartphone to maximize the performance of heart rate (HR) tracking while also maximizing the smartwatch's battery life. In particular, we first analyze the trade-offs between running on-device HR tracking or offloading the work to the mobile. Then, thanks to an additional step to evaluate the difficulty of the upcoming HR prediction, we demonstrate that we can smartly manage the workload between smartwatch and smartphone, maintaining a low mean absolute error (MAE) while reducing energy consumption. We benchmark our approach on a custom smartwatch prototype, including the STM32WB55 MCU and Bluetooth Low-Energy (BLE) communication, and a Raspberry Pi3 as a proxy for the smartphone. With our Collaborative Heart Rate Inference System (CHRIS), we obtain a set of Pareto-optimal configurations demonstrating the same MAE as State-of-Art (SoA) algorithms while consuming less energy. For instance, we can achieve approximately the same MAE of TimePPG-Small (5.54 BPM MAE vs. 5.60 BPM MAE) while reducing the energy by 2.03x, with a configuration that offloads 80\% of the predictions to the phone. Furthermore, accepting a performance degradation to 7.16 BPM of MAE, we can achieve an energy consumption of 179 uJ per prediction, 3.03x less than running TimePPG-Small on the smartwatch, and 1.82x less than streaming all the input data to the phone.

Energy-efficient Wearable-to-Mobile Offload of ML Inference for PPG-based Heart-Rate Estimation / Burrello, Alessio; Risso, Matteo; Tomasello, Noemi; Chen, Yukai; Benini, Luca; Macii, Enrico; Poncino, Massimo; JAHIER PAGLIARI, Daniele. - ELETTRONICO. - (2023). (Intervento presentato al convegno Design, Automation & Test in Europe Conference & Exhibition (DATE) tenutosi a Antwerp (Belgium) nel 17-19 April 2023) [10.23919/DATE56975.2023.10137129].

Energy-efficient Wearable-to-Mobile Offload of ML Inference for PPG-based Heart-Rate Estimation

Alessio Burrello;Matteo Risso;Yukai Chen;Luca Benini;Enrico Macii;Massimo Poncino;Daniele Jahier Pagliari
2023

Abstract

Modern smartwatches often include photoplethysmographic (PPG) sensors to measure heartbeats or blood pressure through complex algorithms that fuse PPG data with other signals. In this work, we propose a collaborative inference approach that uses both a smartwatch and a connected smartphone to maximize the performance of heart rate (HR) tracking while also maximizing the smartwatch's battery life. In particular, we first analyze the trade-offs between running on-device HR tracking or offloading the work to the mobile. Then, thanks to an additional step to evaluate the difficulty of the upcoming HR prediction, we demonstrate that we can smartly manage the workload between smartwatch and smartphone, maintaining a low mean absolute error (MAE) while reducing energy consumption. We benchmark our approach on a custom smartwatch prototype, including the STM32WB55 MCU and Bluetooth Low-Energy (BLE) communication, and a Raspberry Pi3 as a proxy for the smartphone. With our Collaborative Heart Rate Inference System (CHRIS), we obtain a set of Pareto-optimal configurations demonstrating the same MAE as State-of-Art (SoA) algorithms while consuming less energy. For instance, we can achieve approximately the same MAE of TimePPG-Small (5.54 BPM MAE vs. 5.60 BPM MAE) while reducing the energy by 2.03x, with a configuration that offloads 80\% of the predictions to the phone. Furthermore, accepting a performance degradation to 7.16 BPM of MAE, we can achieve an energy consumption of 179 uJ per prediction, 3.03x less than running TimePPG-Small on the smartwatch, and 1.82x less than streaming all the input data to the phone.
2023
978-3-9819263-7-8
File in questo prodotto:
File Dimensione Formato  
Energy-efficient_Wearable-to-Mobile_Offload_of_ML_Inference_for_PPG-based_Heart-Rate_Estimation.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DATE23___PPGCollaborative__arxiv_.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979265