We study critical trajectories in the hyperbolic plane for the 1/2-Bernoulli’s bending energy with length constraint. Critical trajectories with periodic curvature are classified into three different types according to the causal character of their momentum. We prove that closed trajectories arise only when the momentum is a time-like vector. Indeed, for suitable values of the Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of countably many closed trajectories with time-like momentum, which depend on a pair of relatively prime natural numbers.

Closed 1/2-elasticae in the hyperbolic plane / Musso, Emilio; Pámpano, Álvaro. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - ELETTRONICO. - 527:1(2023), pp. 1-35. [10.1016/j.jmaa.2023.127388]

Closed 1/2-elasticae in the hyperbolic plane

Musso, Emilio;
2023

Abstract

We study critical trajectories in the hyperbolic plane for the 1/2-Bernoulli’s bending energy with length constraint. Critical trajectories with periodic curvature are classified into three different types according to the causal character of their momentum. We prove that closed trajectories arise only when the momentum is a time-like vector. Indeed, for suitable values of the Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of countably many closed trajectories with time-like momentum, which depend on a pair of relatively prime natural numbers.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X23003918-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.41 MB
Formato Adobe PDF
5.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Final_Version_Revised.pdf

embargo fino al 12/05/2025

Descrizione: Author's Accepted Manuscript
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979220