We study critical trajectories in the hyperbolic plane for the 1/2-Bernoulli’s bending energy with length constraint. Critical trajectories with periodic curvature are classified into three different types according to the causal character of their momentum. We prove that closed trajectories arise only when the momentum is a time-like vector. Indeed, for suitable values of the Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of countably many closed trajectories with time-like momentum, which depend on a pair of relatively prime natural numbers.
Closed 1/2-elasticae in the hyperbolic plane / Musso, Emilio; Pámpano, Álvaro. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - ELETTRONICO. - 527:1(2023), pp. 1-35. [10.1016/j.jmaa.2023.127388]
Closed 1/2-elasticae in the hyperbolic plane
Musso, Emilio;
2023
Abstract
We study critical trajectories in the hyperbolic plane for the 1/2-Bernoulli’s bending energy with length constraint. Critical trajectories with periodic curvature are classified into three different types according to the causal character of their momentum. We prove that closed trajectories arise only when the momentum is a time-like vector. Indeed, for suitable values of the Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of countably many closed trajectories with time-like momentum, which depend on a pair of relatively prime natural numbers.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X23003918-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.41 MB
Formato
Adobe PDF
|
5.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Final_Version_Revised.pdf
embargo fino al 12/05/2025
Descrizione: Author's Accepted Manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2979220