We prove asymptotic results for 2-dimensional random matching problems. In particular, we obtain the leading term in the asymptotic expansion of the expected quadratic transportation cost for empirical measures of two samples of independent uniform random variables in the square. Our technique is based on a rigorous formulation of the challenging PDE ansatz by Caracciolo et al. (Phys Rev E 90:012118, 2014) that linearizes the Monge–Ampère equation.

A PDE approach to a 2-dimensional matching problem / Ambrosio, L.; Stra, F.; Trevisan, D.. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - 173:1-2(2019), pp. 433-477. [10.1007/s00440-018-0837-x]

A PDE approach to a 2-dimensional matching problem

Ambrosio L.;Stra F.;
2019

Abstract

We prove asymptotic results for 2-dimensional random matching problems. In particular, we obtain the leading term in the asymptotic expansion of the expected quadratic transportation cost for empirical measures of two samples of independent uniform random variables in the square. Our technique is based on a rigorous formulation of the challenging PDE ansatz by Caracciolo et al. (Phys Rev E 90:012118, 2014) that linearizes the Monge–Ampère equation.
File in questo prodotto:
File Dimensione Formato  
1611.04960.pdf

non disponibili

Descrizione: arxiv
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 388.2 kB
Formato Adobe PDF
388.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
A PDE approach to a 2-dimensional matching problem.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 711.81 kB
Formato Adobe PDF
711.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978907