This work addresses brain stroke evolution assessment in mimicked clinical conditions using a low-complexity microwave imaging (MWI) scanner and realistic anthropomorphic head models. In particular, the MWI prototype employs a wearable 22-element flexible-antenna array, keeping a simple architecture and demanding low-computing power. It allows a real-time follow-up of the stroke-affected areas, providing 3-D maps of the dielectric variation through a differential linear imaging approach based on the Truncated Singular Value Decomposition (TSVD), the distorted Born approximation, and artifact removal procedure. The system includes a digital twin that emulates high-fidelity scenarios via EM full-wave simulations performed in an in-house Finite Element Method (FEM) solver. Finally, the assessment examines the system’s monitoring capabilities involving custom-made and lifelike phantoms representing a dynamic stroke evolution.
Experimental validation of a microwave scanner for brain stroke monitoring in realistic head models / Origlia, C.; Rodriguez-Duarte, D. O.; Gugliermino, M.; Tobon Vasquez, J. A.; Scapaticci, R.; Crocco, L.; Vipiana, F.. - ELETTRONICO. - (2023), pp. 509-510. (Intervento presentato al convegno 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) tenutosi a Portland, Oregon, USA nel 23-28 July 2023) [10.1109/USNC-URSI52151.2023.10237424].
Experimental validation of a microwave scanner for brain stroke monitoring in realistic head models
C. Origlia;D. O. Rodriguez-Duarte;M. Gugliermino;J. A. Tobon Vasquez;F. Vipiana
2023
Abstract
This work addresses brain stroke evolution assessment in mimicked clinical conditions using a low-complexity microwave imaging (MWI) scanner and realistic anthropomorphic head models. In particular, the MWI prototype employs a wearable 22-element flexible-antenna array, keeping a simple architecture and demanding low-computing power. It allows a real-time follow-up of the stroke-affected areas, providing 3-D maps of the dielectric variation through a differential linear imaging approach based on the Truncated Singular Value Decomposition (TSVD), the distorted Born approximation, and artifact removal procedure. The system includes a digital twin that emulates high-fidelity scenarios via EM full-wave simulations performed in an in-house Finite Element Method (FEM) solver. Finally, the assessment examines the system’s monitoring capabilities involving custom-made and lifelike phantoms representing a dynamic stroke evolution.| File | Dimensione | Formato | |
|---|---|---|---|
| 0000509.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										6.94 MB
									 
										Formato
										Adobe PDF
									 | 6.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| URSI_APS_2023_Origlia.pdf accesso aperto 
											Descrizione: Articolo principale
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										6.93 MB
									 
										Formato
										Adobe PDF
									 | 6.93 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978036
			
		
	
	
	
			      	